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Preface

In the last few years, the search for radically new approaches to software
engineering has witnessed a great momentum. These efforts are well justified
by the troubling state of present day computer science.

Software engineering practices based on design-time architectural compo-
sition (the only assessed way of doing software engineering so far), lead to
brittle and fragile systems, unable to gracefully cope with reconfiguration and
faults. While such practices can be acceptable when dealing with software
systems to be deployed in closed and static scenarios, they are definitely un-
suitable for most emerging computing scenarios.

More and more, software systems involve autonomous and distributed soft-
ware components that have to execute and interact in open and dynamic en-
vironments. This is the case of information economies, pervasive and mobile
computing systems, wide-area Internet applications, and P2P computing. In
all these scenarios, the dynamism, openness, and decentralization of the appli-
cation’s operational environments call for new approaches to software design
and development, capable of supporting spontaneous configuration and net-
working, and capable of tolerating partial failures and adaptive reorganization
of the software system.

Hints for the feasibility of such innovative approaches can come from a
variety of natural systems. The process of morphogenesis in organisms demon-
strates that well-defined shapes and functional structures can develop through
the interaction of cells under the control of a genetic program, even though
the precise arrangements and numbers of the individual cells are variable.
The process of ant foraging demonstrates how the application goal of finding
and carrying home food in hostile environments can be achieved by simple
interactions among a multitude of individuals of limited intelligence.

By getting inspiration from natural systems, scientists and engineers are
starting to understand that, to construct self-organizing and adaptive systems,
it may be more appropriate focusing on the engineering of proper interaction
mechanisms for the components of the system, rather than on the engineering
of their overall system architecture.
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In line with the above consideration, this book focuses on a physically
inspired interaction model, i.e., field-based coordination. Field-based coor-
dination relies on virtual computational fields, mimicking gravitational and
electromagnetic fields, as the basic mechanisms with which to coordinate ac-
tivities in open and dynamic ensembles of application components. This en-
ables components to spontaneously interact with each other by the mediation
of fields and – as in physical systems – to self-organize in an adaptive way
their activity patterns. All of this with the additional advantage that – unlike
in real-world physical systems – one can shape fields according to any needed
virtual physical law, to achieve a variety of coordination patterns in support
of a variety of application goals.

This book summarizes in a readable and accessible way some four years
of work in the area of advanced field-based coordination models. The specific
model presented in this book together with the middleware technologies that
have been developed to support it, define a general-purpose approach for the
engineering of self-organizing adaptive applications in a number of scenarios.
The title of the book evokes the fact that the model was originally conceived
for multiagent systems in pervasive computing scenarios. However, we invite
readers to consider it as reflecting the fact that field-based coordination may
be suitable for all systems made up of autonomous interacting components
(agents de facto), from sensor networks to P2P computing systems, that will
soon pervade our everyday environments.

Additional material for this book, including code of the simulations and
of the TOTA middleware, can be found at the Web site of the Agents and
Pervasive Computing Group, http://www.agentgroup.unimore.it.
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1

Introduction

Novel research findings in different areas are promoting radical changes in the
upcoming Information and Communication Technology scenario. On the one
hand, advances in pervasive and embedded computing systems (e.g., smart ob-
jects [44, 163], self-assembly [1, 102], sensor networks [33, 105], and distributed
MEMS [11, 152]) will soon make our everyday environments populated by
myriads of interacting computer-based systems. On the other hand, world-
wide distributed computing (enabled by proposals for worldwide distributed
service access [26, 98] and efficient approaches to adaptive distributed com-
puting [3, 122, 45] and to location-based [119, 125, 22] and content-based
data access [120, 129]) is eventually becoming a reality. Between these two
extremes, various scenarios of use are arising, including personal-area net-
works (e.g., the ensemble of Bluetooth-enabled interacting computer-based
components we could carry or find in our cars), MANETs (short for mobile
ad hoc networks, e.g., dynamic networks of PDAs carried by members of a
rescue team that have to directly interact and coordinate with each other in
a disaster area), and networked furniture and appliances (e.g., Web-enabled
fridges and ovens able to interact with each other and effectively support our
culinary activities in a coordinated way).

1.1 The Challenge

Although the hardware technology for the above scenarios is rapidly maturing,
the current state of software engineering models and practices – required to
develop software applications in such huge and dynamic environments – seems
not to be ready for such a revolution [77, 165]. In fact, software engineering
practices have remained more or less the same since structured design and
distributed programming methodologies were introduced: software is designed
and developed in terms of components that are subject to a centralized flow
of control and that are coupled at design time by fixed interaction patterns.
Centralization of control and the static nature of interactions can make the
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design and development process simpler, but it typically leads to brittle and
fragile software systems, unable to cope with dynamic reconfiguration and
faults.

In recent years, researches on software agents and multiagent systems
have fostered a programming paradigm based on autonomous components
(i.e., components with independent threads of execution and control) that
dynamically interact with each other toward the achievement of some appli-
cation goals without being strictly coupled with each other at design time
[10, 22, 112]. This paradigm shift is well motivated by the robustness, scala-
bility, and flexibility of systems based on autonomous agents: if a component
breaks down, the others can autonomously reorganize their interaction pat-
terns to account for such a failure; if new components are added to the system,
they can autonomously discover which other components are present and start
to interact with them.

The key element leading to such robust, scalable, and flexible behaviors
is, in addition to autonomy, the capability of self-organizing and adaptive
coordination. Autonomous components must be able to spontaneously and
dynamically coordinate their activity patterns to achieve goals exceeding their
capabilities as single individuals, despite, and possibly taking advantage of,
environment dynamism and unexpected situations [108, 132, 163]. Nature, for
example, “adopts” these ideas at all scales, e.g., in colonies of social insects,
in the cells of the immune systems, in the neurons of the brain [7, 8, 14].
The inherent dynamism of modern distributed computing scenarios invites
one to get inspiration from these natural approaches to coordination, in order
to promote the development and deployment of robust, self-organizing, and
self-adaptive distributed applications.

Unfortunately, even though that nature can be a source of inspiration
for the identification of novel coordination models, the general problem of
programming and managing complex software systems that are deployed in
dynamic scenarios is still open. The main conceptual difficulty is that while
the developer can enforce direct control only on agents’ local activities and
local interactions, the application goal to be achieved is often expressed at the
global scale [8, 14]. For example, the problem of routing in a MANET can be
easily regarded as an adaptive coordination problem: autonomous nodes must
cooperate, forwarding each other packets, to let the packets flow from sources
to destinations. The reason routing in MANET is a difficult problem is that
one can control only agents’ local activities, specifying how an agent routes
a packet to its immediate neighbors (the only ones reachable). However, the
application goal is global: packets must flow from distant nodes across the
whole network, which is typically dynamic and whose evolution cannot be
controlled.

Bridging the gap between local and global activities is not easy, but it
has been shown to be possible. By exploiting some nature-inspired interac-
tion mechanisms with a proper application-specific tuning of parameters, it is
possible to reproduce natural phenomena of adaptive self-organization (i.e.,
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the emergence of globally coherent behaviors from local interactions) and put
them to the service of specific application goals in specific scenarios. For ex-
ample, the phenomenon of ant foraging has been proposed and successfully
applied to routing in MANET [14].

The key problem is that the above success stories – dealing with spe-
cific solutions for specific application domains – do not provide lessons that
can generalize to other scenarios. Indeed, what we really need are general-
purpose approaches, supported by widely applicable methodologies, middle-
ware, and tools, with which to promote the development of self-organizing
adaptive applications in a variety of modern distributed computing scenarios
[1, 132, 77, 165].

1.2 Contribution of the Book

The main contribution of this book is to present a novel coordination model
that – together with its supporting middleware infrastructure – has the poten-
tial to form the basis for a general-purpose and widely applicable approach
for the design and development of self-organizing and adaptive distributed
applications.

The proposed coordination model takes its inspiration from the physi-
cal world, and in particular from the way masses and particles in our uni-
verse move and globally self-organize according to the contextual information
represented by gravitational and electromagnetic fields. To acknowledge that
inspiration, the model is called Field-based coordination. Field-based coordi-
nation aims at supporting agents’ activities by providing, through the concept
of “computational fields,” a single abstraction to (i) promote uncoupled and
adaptive interactions and (ii) provide agents with simple, yet expressive, con-
textual information.

These general ideas are embodied in our proposal called Co-Fields (short
for “computational fields”). In Co-Fields, each agent in an environment (e.g.,
a mobile device carried by a human user as well as any embedded computing
device) can generate and propagate, according to specific laws, component-
specific fields conveying some application-specific information about the local
environment and/or about itself. Other agents can then locally perceive these
fields and can react according to the local configuration and shape of the
perceived fields. Engineering a coordination policy within this model consists
in specifying local interactions: how agents generate fields, how these fields
are propagated, and how agents subscribe and react to the fields. The global
coordination simply emerges in a self-organized and adaptive way from these
local field-mediated interaction patterns.

The Co-Fields model can be used to develop and deploy application with
the support of the Tuples On The Air (TOTA) middleware infrastructure,
specifically conceived to support Co-Fields coordinated applications. In the
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TOTA middleware, all interactions between agents take place in a fully un-
coupled way by tuples’ exchange. However, TOTA does not promote any sort
of centralized shared tuple space. Rather, TOTA implements the abstraction
of computational fields by tuples that can be “injected” into a networked
system from any node and that can then propagate and diffuse in the sys-
tem according to tuple-specific propagation patterns. The TOTA middleware
takes care of tuple propagation by automatically readapting propagation pat-
terns according to the dynamic changes that can occur in the network (as
due to, e.g., mobile or ephemeral nodes). Agents can exploit a simple API to
program and inject new tuples in the network and to locally sense both tuples
and events associated with changes in the tuples’ distributed structures (e.g.,
arrival and dismissing of tuples).

1.3 Structure of the Book

This book is divided into four main parts.
Part I presents an overview of the scenarios of interest and motivates the

work by outlining the fundamental role of coordination in such scenarios. In
particular, Chap. 2 describes our view of the future for Information and Com-
munication Technologies, by showing that a vast range of scenarios, ranging
from Internet-scale peer-to-peer (P2P) systems to networks of tiny microsen-
sors, share very common issues and requirements with regard to application
development and software engineering principles. Chapter 3 emphasizes the
fundamental role of coordination in the context of such future scenarios and
shows the inadequacy of current coordination models and middleware in sup-
porting the development of self-organizing and adaptive applications.

Part II introduces field-based coordination models and details the Co-
Fields model. Specifically, Chap. 4 describes field-based coordination as a
powerful approach to support coordination in modern dynamic environments.
A number of approaches in different areas exploiting some kinds of field-
based coordination are presented and discussed. Chapter 5 presents in detail
the Co-Fields model, emphasizing how Co-Fields abstractions overcome some
problems at the heart of previous approaches. A formal description of the
model, obtained by a dynamic system formalism, is presented along with
several simulation results.

Part III focuses on the implementation and deployment of the field-based
abstractions. Chapter 6 shows how the Co-Fields model can be implemented
– with some limitations – by exploiting the services of “off the shelf” middle-
ware. Chapter 7 describes TOTA, a middleware and a programming model
specifically conceived to support field-based coordination at its best. The
chapter shows how TOTA distributed tuples naturally match the Co-Fields
abstractions. A prototype implementation of the middleware is discussed to-
gether with the implementation of an emulator enabling us to test the system
in large-scale scenarios.
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Part IV puts Co-Fields and TOTA at work, by presenting several ad-
vanced Co-Fields coordinated applications that have been developed (or sim-
ply designed) by making use of the TOTA middleware. Chapter 8 focuses on
content-based approaches to distributed information access, and shows how
Co-Fields and TOTA can flexibly implement it. Chapter 9 shows how Co-
Fields and TOTA can be used to promote self-assembly and motion coordina-
tion in systems of mobile robots. Chapter 10 presents a visionary application,
the cloak of invisibility, and shows how field-based coordination can be ex-
ploited within it.

Finally, Chap. 11 concludes the book and outlines open research issues.



Part I

The Scenario



2

Upcoming Information Technology Scenarios

Recent advances in electronics, telecommunications, and software technologies
are making a variety of innovative distributed computing scenarios come to
the fore. Robot swarms, sensor networks, pervasive computing systems, P2P
networks, and Internet ecologies, promise to dramatically impact our future
lives by supporting our social and professional activities in a ubiquitous and
personalized way and by dramatically improving our interactions with both
the physical and the cyberworlds.

This chapter details the key characteristics of several of the above sce-
narios and shows that all of them – although very diverse from each other
in terms of both underlying hardware and application goals – share some
common key characteristics. In fact, they all involve a large number of dis-
tributed and autonomous computational entities that interact with each other
in decentralized networks with a highly dynamic structure.

The above common characteristics challenge traditional approaches to ap-
plication design and development, calling for novel approaches supporting
adaptive self-organization. However, the fact that there are common charac-
teristics also lets us envision the possibility of identifying some general-purpose
approaches that can apply with little or no modifications to scenarios as di-
verse as sensor networks and P2P networks.

2.1 From Robot Self-Assembly to Internet Ecologies

In order to present in a rational way a variety of diverse distributed sys-
tems scenarios, we can roughly classify them based on the type of computing
devices involved and on the scale at which distribution occurs. The “micro
scale” considers networks of low-end computing devices typically distributed
over a geographically small area and interacting by short-range wireless con-
nections (i.e., sensor networks and smart dust). The “medium scale” considers
medium-end wearable, portable, and embedded devices interacting by short-
and medium-range connections (i.e., pervasive computing environments). The
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“global scale” considers high-end computing devices participating in world-
wide distributed applications (i.e., P2P and global service networks).

2.1.1 The Micro Scale

With the MEMS revolution in full swing, microsensors are now following man-
ufacturing curves that are at least related to Moore’s Law [114]. This trend,
when combined with both the push for low power communication and compu-
tation devices and for the ubiquitous provisioning of data and services, paves
the way for the “spray computers” revolution [161, 165]. It is not hard to
envision a future in which networks of microcomputers will be literally sold as
spray cans, to be sprayed in an environment or on specific artifacts to enrich
them with functionalities that, as of today, may appear futuristic and vision-
ary [1, 103, 163, 115]. The number of potential applications of the scenario is
endless, ranging from smart and invisible clothes, intelligent interactive envi-
ronments, self-assembly materials, and self-repairing artifacts.

As proved in the context of the Smart Dust project at Berkeley [11, 73], it is
already possible to produce full-fledged computer-based systems smaller than
a cubic centimeter, and even much smaller ones will be produced in the next
few years [136]. Such computers, which can be enriched with communication
capabilities (radio or optical), local sensing (e.g., optical, thermal, or inertial)
and local effecting (e.g., optical and mechanical) capabilities, are the basic
ingredients of our spray computer vision.

Spray computers, as we imagine them, are clouds of sub-millimeter-scale
microcomputers, to be deployed in an environment or onto specific artifacts
by a spraying or painting process. Once deployed, such components will spon-
taneously network with each other and will coordinate their actions (i.e., local
sensing and effecting) to provide specific “smart” functionalities. We imagine
it will be possible, say in 2020, to go to the local store and buy, for a few Eu-
ros, a “pipe repairing” spray, made up of a cloud of MEMS devices capable of
navigating in a pipeline, recognizing the presence of holes, and self-assembling
with each other so as to perfectly repair the pipe. Similarly, we could imagine
a spray to transform our everyday desk into an active one, capable of rec-
ognizing the positions and characteristics of objects placed on it and letting
them meaningfully interact [21].

Another peculiar application we envision is the “spray of invisibility” (de-
scribed in Chap. 10 and in more detail in [163]): a spray of micro devices
capable of receiving and retransmitting light emissions in a directional way,
and capable of interacting with each other by short-range wireless communi-
cations. When an object is covered by a layer of such a spray, the emissions
of the devices make external observers perceive exactly the same light config-
uration that they would have perceived if there was nothing in between. In
fact, sensors on the rear side of the object can receive such a light configura-
tion and, by distributed coordination, can communicate it to emitters on the
observer’s side to be retransmitted.
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Other types of application one could envision include any type of self-
assembly artifact [103], including things like the T1000 robot in the movie
Terminator 2, the nanoswarms of Michael Chricton’s novel Prey [24], and
MEMS-based artificial immune systems and drugs [115].

Within the micro scale, and beside the spray computer vision, we can also
classify recent efforts in the area of sensor networks [33]. Wireless networks
of small computing devices enriched with various sensorial capabilities (e.g.,
thermal, inertial, or optical) have already been deployed in a variety of en-
vironments (e.g., buildings or landscapes) to monitor such environments in
a cooperative way, by spontaneously networking with each other in order to
coordinate their activities and to exchange sensorial information (see Fig. 2.1).

2.1.2 The Medium Scale

Besides micro devices to be literally sprayed, “spray computers” can also act
as a power metaphor for the key characteristics of the emerging scenarios of
ubiquitous and pervasive computing, as enabled by handheld, wearable, and
embedded, networked computing systems. We already typically carry two or
three computers (i.e., a cell phone, a laptop, and possibly a PDA). Also, our
houses are already populated by a variety of microprocessor-based furniture
(e.g., TVs, phones, etc.). However, at the moment, the networking capabilities
of these computer-based systems are underexploited. Very soon, however, all
these devices will start communicating and interacting with each other to
provide new applications and value-added services (see Fig. 2.2). Our world
will be densely populated by personal-area networks (e.g., the ensemble of
Bluetooth-enabled interacting computer-based components we could carry or
find in our cars), local ad hoc networks of handheld computers (e.g., networks
of interacting PDAs carried by team members to interact and coordinate
with each other in an open space), and furniture networks (e.g., Web-enabled
fridges and ovens able to interact with each other and effectively support our
culinary activities in a coordinated way).

Consider a scenario a few years hence in which a large city like Boston
might have several wireless base stations in every building, i.e., a number of
nodes in the order of 107. If most of the electrical devices in the buildings and
those carried on by people are wirelessly networked too, then the total number
of nodes could be as high as 1010. If these nodes communicate peer-to-peer
with nearby devices, then one could envision the entire city as connected into
a huge mobile ad hoc network approximately 103 hops in diameter, comprised
of extremely heterogeneous entities like workstations, computer-enabled fur-
niture, cell phones, PDAs, and embedded sensors [9].

The possibilities of adopting these new technologies are endless and will be
likely to impact every aspect of our lives: to support our cooperative activities
[59], to monitor and control our environments [16], to improve our interactions
with the physical world [87], in environmental sciences [139], in child and
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a) b)

c) d)

e) f)

Fig. 2.1. The micro scale: different micro scale devices. (a) A microsensor integrat-
ing processing unit, memory, wireless interface, and power supply; photo taken from
[128]; (b) Sensor mote circuit [127]; (c) Sensor device deployed in a natural environ-
ment [143]; (d) Mobile wheeled micro device; photo from [127]; (e) Micro wireless
robot; image from [100]; (f) T1000 terminator from the Terminator 2 movie
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health care [138], in entertainment [113], and in the military [130], to mention
just a few examples.

Already today, for example, navigator-equipped cars can give us instruc-
tions on how to reach a specific address. However, in the near future, when
computing and communication will be widespread, those navigators could
provide much more added value: they could dynamically interact with traffic
lights to negotiate on a specific green light timing policy, suggest alternative
directions on the basis of the current traffic condition, notify other cars about
a police car in ambush to hand off tickets, or – more ethically – automatically
choke the engine to enforce speed limits.

As another application scenario, smart phones or palm computers could
give us advice on restaurants and good pubs while visiting a new city, depend-
ing on our preferences and mood. Such an advice could be based on consulting
online recommendation services, sharing of comments of past users or even
dynamically exchanged on the fly between users (e.g., “hey, there is a good
party going on at Griffin’s Pub...,” or in an Indian restaurant “this evening
the Vindaloo chicken is not spicy enough...”).

What we want here to emphasize is that the above kinds of applications
involve dynamic networks of spontaneously interacting devices, thus resem-
bling, at a different scale, the types of networks involved in the micro scale
scenario described before. Consequently, they will also share with the micro
scale the same issues as far as the development and management of distributed
applications are concerned.

2.1.3 The Global Scale

In the case of macro-scale networks made up of high-end computer systems
distributed at a worldwide scale, i.e., the Internet, the Web, and P2P networks,
very similar issues arise.

The dramatic growth of these networks and of the information and traffic
to be managed, together with the increasing request for ubiquitous connectiv-
ity, have recently raised researchers’ attention to the need for radically novel
approaches to distributed systems management [77]. Traditional approaches to
management, requiring human configuration efforts and supervision, fall short
when the number of nodes in the network (e.g., the number of inter-related
services and links on the Web, or the number of peers in a P2P network)
grows in a fully decentralized way, and when the presence of the nodes in a
network is of an intrinsically ephemeral nature, as it is in the case of laptops
on the Internet, of non-commercial services on the Web, and of peers in P2P
networks (see Fig. 2.3).

The need for such novel approaches is even more fundamental and com-
pelling when considering the endless range of applications lying ahead in the
near future.

The Semantic Web [144], envisioned by the W3C, will provide a quan-
tum leap to the functionalities (but also to the complexities) offered by the
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a) b)

c)

Fig. 2.2. The medium scale: wearable and handheld computing devices. (a) A belt
wearable computing infrastructure; image taken from [149]; (b) Head-up wearable
display; image taken from [134]; (c) A tourist accessing information on site by a
PDA
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Web. The Semantic Web is intended to complement humans in areas in which
they do not perform well, such as processing large volumes of information
quickly or analyzing large texts for certain pieces of information. While tech-
nologies for semantic data representation, like XML, RDF [158], and ontolo-
gies (DAML+OIL) [27], will provide the basic infrastructure, intelligent au-
tonomous agents will process and distill such information on the fly to answer
specific queries, avoiding information overload. The Semantic Web, and other
developments such as multiagent systems economies – where intelligent agents
will be fully delegated to being economic actors to buy, sell, and negotiate for
good – and Grid computing [37] – where any one computer can tap the power
of all computers – will possibly give rise to the concept of the “global brain”
[146, 68]. According to this vision, the Web will act as a global superorgan-
ism, the “brain” of society. Intelligent agents, populating the Web, will scan
and distill humanity’s collective knowledge, identifying undiscovered relations
between concepts and enabling communication of concepts even where there
is no commonality of terms.

In all these cases, as visionary as the described applications can be, the
development and management of distributed applications cannot of course
rely on static architectural design and interaction patterns.

2.2 Distinguishing Characteristics

Embedded computing systems, sensor networks, pervasive computing envi-
ronments, and worldwide computing systems, despite the apparent macro dis-
similarity, share similar characteristics and introduce very similar issues with
regard to programming and management, calling for context-aware interac-
tion models capable of supporting adaptive self-organization of distributed
activities.

• Large Scale. The various scenarios we have introduced in the previous
subsection are all characterized by being composed of a possibly very high
number of distributed components. The spray computer vision considers
the possibility of deploying millions of micro devices; pervasive comput-
ing suggests that each and every object in an environment can become a
computer-based device capable of networking with any number of nearby
devices; current P2P networks already involve millions of users. Moreover,
we must consider that all the above scenarios, now mostly studied as stand-
alone systems, will be in the near future part of a huge network (with a flat,
hierarchical, or somewhat clustered structure), including traditional Inter-
net nodes, smart computer enriched objects and furniture, and networks of
embedded and dispersed microsensors. For instance, the IPv6 addressing
scheme will make it possible to assign an Internet address to every cubic
millimeter of the earth surface [54], thus opening the possibility for each
and every computer-based component to become part of a single world-
wide network. Clearly, the large number of components involved makes
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Fig. 2.3. The global scale: worldwide connectivity in distributed applications.

any traditional approach that implies the necessity of directly configuring
each and every component of a system very hard to apply and, possibly,
economically infeasible.

• Decentralization. One should also consider that the components of all
these networks may not all be directly accessible for configuration and
control, due to decentralization. Sensor networks may be deployed in hos-
tile, uneasy to access landscapes. Pervasive computing environments may
involve components developed in separate contexts and belonging to dif-
ferent stakeholders. P2P networks, by definition, involve a multiplicity of
independent stakeholders which prevent direct access to individual compo-
nents of the network. In addition, for spray computers, direct control over
each component may be made impossible by the size of the components
involved. This said, it is rather clear that those approaches considering
the possibility of directly configuration and maintenance at the level of
individual components may not only be difficult to enforce but simply
impossible.

• Network Dynamics. Although the overall structures of, e.g., sensor net-
works, pervasive computing networks, and worldwide networks, may be
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apparently very different from each other, they are all characterized by be-
ing intrinsically amorphous and dynamic. On the one hand, such networks
tend to be amorphous either because they have been deployed without
any determined configuration (think of a spray computer network or of a
sensor network randomly deployed in a landscape) or because they grow
and evolve without any central control (think of a pervasive computing
network which continuously evolves as new smart objects are integrated
in an environment, or at the way in which new users connect to a P2P
community). On the other hand, such networks are characterized by an in-
trinsically dynamic structure, due to the presence of ephemeral nodes (e.g.,
sensors in a network can die or run out of power, the nodes in a world-
wide P2P network can be shutdown or temporarily unreachable) and the
presence of mobile nodes (e.g., mobile robots, laptops carried by humans).
The above dynamics require the capability of a system to continue work-
ing in a proper way without being affected by the underlying changes in
the network structure, i.e., to properly reconfigure its structure to reflect
a changed situation. Clearly, these operations should by performed by the
system in autonomy, without requiring any human intervention that, as
previously outlined, is already hard to enforce at deployment time and can
be impossible to enforce at runtime.

• Need for Context-Awareness. The dynamism of the network makes it
impossible for application components to rely on strong a priori informa-
tion about their execution context (e.g., the other application components
with which to interact, their location in the network, the characteristics
of the local environment in which they are executing). This forces appli-
cations to acquire at runtime all the contextual information required to
dynamically adapt their behavior and proceed with their execution despite
network dynamics [22, 125]. In other words, application components must
become context-aware.
The need for promoting context-awareness is also a consequence of the
fact that most of modern scenarios are characterized by situated activities,
i.e., are related with their being located in some sort of physical or virtual
computational environment. On the one hand, situatedness can be at the
very core of the application (e.g., in sensor networks and in pervasive
computing systems the very goal is to exploit the physical location of
nodes and their capabilities to collect environmental data to improve our
interaction with the physical world). On the other hand, situatedness can
relate to the fact that components can take advantage of some sort of
computational environment to organize the access to distributed resources
(as, e.g., on the Web and in P2P data sharing networks).
In any case, any approach to design and development that does not prop-
erly account for context-awareness as a primary design development will
simply be unsuitable for modern and future distributed computing scenar-
ios.
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All the above considerations suggest that the goal of identifying innovative
software engineering approaches, uniformly accounting for the specific prob-
lems and issues arising at different scenarios, and proposing suitable solutions
toward the development of self-organizing, adaptive, and context-aware appli-
cations, is a realistic goal, worth investigating.

2.3 Relevant Research Projects

Several projects around the world are starting to recognize the relevance of
the above themes and are facing issues related, to different extents, to the
identification of novel approaches for the engineering of what we can generally
identify as “spray computing” systems and applications.

Without the ambition to be exhaustive, we present here a few relevant
threads of activities and discuss what are, in our opinion, their shortcomings.

2.3.1 The Micro Scale

Very close to our spray computers vision, the Amorphous Computing project
at MIT [1] focuses on the problem of identifying suitable models for program-
ming applications over amorphous networks of “computing particles.”

The goal of these applications is to enable locally interacting particles
to self-organize coherent patterns of activity in the amorphous network
[21, 103, 104]. So far, the Amorphous Computing project has defined a simple
yet effective language for programming particles on the basis of an interaction
model relying on the propagation of simple computational fields. On this basis,
it has been shown how it is possible to exploit such a language and interaction
model to let the particles self-organize a coordinate system and self-determine
their position in it, and how it is possible to let a variety of global patterns
get organized in a system from local interactions. What the project has still
not addressed are the problems related to mobile and ephemeral particles:
the network is considered static, and the relative position of particles is con-
sidered fixed. Also, the project so far has focused on very simple particles
as finite-state machines with a limited number of states – not much different
from cellular automata cells [154]. The effectiveness of their model and pro-
gramming language in acting as a general-purpose programming approach for
more complex particles in different scenarios is still to be verified . Besides
amorphous computers, most of the researches in the area of micro-scale spray
computers are performed in the context of the “sensor networks” research
community [33, 85, 110].

The key issues being investigated in the area of sensor networks relate
to the identification of effective algorithms and tools to perform distributed
monitoring of activities by a cloud of distributed sensors in a physical envi-
ronment. Representative goals pursued by these researches include tracing the
position and movement of an object, determining the occurrence of specific
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environmental conditions, and reporting sensed data back to a base station in
an efficient way. In general, these researches are indeed providing good insights
on the theme of self-organized spontaneous interactions in amorphous ad hoc
networks, and are leading to some very interesting results. Techniques for self-
localization, self-synchronization of activities, and adaptive data distribution,
all of which are of primary importance for any type of modern computing
scenario, have been widely investigated.

Still, we feel these researches are somewhat limited by three main factors.
Firstly, the accent on “sensing” tends to disregard the “actuating” factor –
a potential source of a wide range of interesting applications. Secondly, most
research work is being devoted to the definition of “power-aware” and “power-
effective” algorithms for distributed sensing (where distributed sensors tend
to self-organize their activities so as to minimize resource consumption). This
is motivated by the current impossibility of providing such small computer
systems with enough battery power to last for a long time. However, in our
opinion, short life batteries and the consequent need for power-aware comput-
ing models are a current contingent problem, rather than a basic research issue
likely to have long-term impact. Scavenging power from sunlight, vibration,
thermal gradients, and background RF, the next generation of microcomput-
ers will be fully autonomous in terms of power supply, and will be capable
of long lasting, if not everlasting, activity. As Kris Pister (the inventor of the
Smart Dust technology) envisions [114, 115], computer-based sensors and ac-
tuators, being entirely solid state and with no natural decay processes, may
be everlasting and survive the human race. Thirdly, and possibly most im-
portantly, these researches have little to say on the issue of identifying novel
general-purpose approaches to application development, suitable for a wide
range of applications and possibly suitable for scenarios beyond the specific
area of sensor networks.

2.3.2 The Medium Scale

Coming to the medium scale, as far as we can see, most of the researches are
focusing either on routing algorithms for mobile ad hoc networks of handheld
computers [20] or on the definition of effective user-level ubiquitous environ-
ments [126, 49].

Researches on routing algorithms for MANETs [20] share several common
issues with researches on algorithms for data distribution on sensor networks.
In our opinion, these works are, again, too often focused on power and re-
sources limitation problems and mostly disregard higher-level issues such as
coordination of distributed behaviors and general-purpose programming ap-
proaches.

Researches on ubiquitous computing environments mostly focus on achiev-
ing dynamic interoperability between applications and pervasive computing
devices. For instance, the Gaia system developed at PARC [126] and the
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EventHeap [66] developed at Stanford, define an architecture based on “ac-
tive” interaction spaces. These spaces are intended to act as a reification of
a specific real-world environment (e.g., a meeting room), where pre-existing
(and pre-programmed) devices and user-level software components can dy-
namically enter, acquire context-awareness, and leave and inter-operate dy-
namically with each other according to specific patterns specified as part of
the active environment.

Although approaches based on active interaction spaces are very suitable
to support context-aware user-level activities and interactions in a pervasive
computing environment, neither Gaia or EventHeap nor most of the other
proposals in this direction have something to say on the issue of designing,
developing, and controlling self-organizing and adaptive distributed applica-
tions. Basically these systems limit themselves to enabling context-aware in-
teractions, but disregard the problem of supporting an adaptive pattern of
activities among components, which are instead statically specified in “old
style” architectural terms.

The same thing is true also for a variety of related researches more focused
on the specific issue of supporting context-aware computing in pervasive com-
puting environments. The majority of proposals [125, 29, 31] presents methods
to discover relevant sources of contextual information, merge them together,
and provide meaningful, high-level descriptions of the data being gathered.

Although the proper and expressive provision of contextual information is
indeed a relevant and fundamental topic, we think that the main shortcoming
of these focused researches is the lack of concern on how the acquired con-
textual information is later exploited. Most of the researches simply assume
humans and individual software components as the natural recipients of such
information. This makes the above proposals inadequate in providing a con-
text representation suitable to support adaptive self-organizing coordinated
activities in distributed applications.

2.3.3 The Global Scale

As far as the global scale is involved, most researches on adaptive and unsu-
pervised computing focus on the key idea of self-organizing overlay networks
for peer-to-peer (P2P) computing.

The need to access data and services according to a variety of patterns
and independently of the availability/location of specific servers calls for P2P
approaches to distributed application development centered on the idea of
overlay networks. This idea (promoted by first generation P2P systems such
as Gnutella [122], and later improved by second generation P2P systems such
as CAN [120], Chord [140], and Pastry [129]) is to have data and services
organized into types of spontaneously organized virtual networks of acquain-
tances . In P2P networks, the allocation of software components that need to
interact with each other (think, e.g., of file-sharing applications) can be intrin-
sically amorphous and dynamic, i.e., composed of an unpredictable number of
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possibly unknown peers placed almost anywhere in the physical network, as if
it were a network of spray computers. However, such amorphous components
can organize themselves into a virtual overlay network of acquaintances that
enables easy and robust interactions. The constituted network, abstracting
from the physical amorphous nature of the actual network, can survive events
such as the arrival of new nodes or the dismissing of some nodes. The ideas
and the results achieved in the area of overlay networks for P2P computing
are outstanding. Still, in our opinion, they are focused on enabling commu-
nication only, and little is said about their potential support for coordinated
distributed applications. Even when global communication is made possible
and efficient by the overlay network, who should talk with whom? What shape
of the overlay network is better suited to specific application needs? How can
coordination of activities be supported by overlay networks? All these unan-
swered questions call for more than simply enabling communication in open
and dynamic networks.

Research work in the area of multiagent systems [63] goes more in the
direction of identifying novel approaches for the design and development of
coordinated applications to be deployed in open, dynamic, and possibly world-
wide scenarios. However, the focus of these researches is, in most of the cases,
related to empowering agents with the intelligence to deal, as individuals, with
the openness and dynamics of the operational environments and with the need
to dynamically interact with other agents to achieve global application goals.
Also, in several cases, the context-awareness dimension is underestimated, de-
spite the fact that the canonical definition of agents explicitly consider them
as situated entities [64]. A few proposals suggest using agents as a general
paradigm for the development of context-aware, adaptive, and self-organizing
applications [165, 162], but these are currently nothing more than declara-
tion of intents or methodological guidelines, of little support in the actual
development and deployment of large-scale dynamic applications.

A very peculiar – and, in our opinion, underestimated – approach actually
supporting adaptive self-organization relates to the experiments conducted in
[146, 68] and best described in [69]. Since all these examples are conceptually
similar, here we will focus the description on the fascinating Slashdot.org
story.

Slashdot.org is a discussion board Web site, where logged users can post
information and comments at will. The problems of such discussion commu-
nity Web sites are – rather intuitively – irrelevant posts and spammers. From
the system architect point of view, the problem is how can the system filter
between “good” and “bad” posts. The solution adopted by Slashdot is known
as collaborative filtering. All the users can rate posted messages and all the
rates are averaged out to create a number that represents how good a post is
likely to be. Then, users can browse through Slashdot, with a quality filter on,
effectively telling the software to hide those posts having a rating lower than
a specified threshold. The power of this solution is its complete scalability
in that the burden of rating is fairly partitioned between Slashdot users. It
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is rather easy to detect in this solution a mix of negative and positive feed-
backs which universally form the basis of robust self-organization in complex
adaptive systems [69]. It is worth noting that Amazon.com and eBay.com
recommendation systems work on similar principles, and similar experiences
have been applied in having a Web community semantically self-organize a
set of common words [146] or perform other distributed problem solving tasks
[68].

Although it is surely not easy to directly apply such experiences to dis-
tributed application development, they nevertheless suggest important ideas
on the path to be followed and on the general methodologies to be pursued.

2.4 Final Considerations

The discussion in this chapter has outlined that a variety of emerging dis-
tributed computing scenarios, although apparently very diverse from each
other, share some common key characteristics: (i) they all involve a large
number of distributed computational and communication activities; (ii) they
take place in decentralized networks that are (iii) characterized by an amor-
phous and highly dynamic structure; and (iv) they require components to
dynamically acquire and properly exploit contextual information.

The above characteristics, far from being merely technological, introduce
a number of conceptual and practical issues related to the design and de-
velopment of distributed applications. In a word, they require novel soft-
ware engineering approaches, promoting the development of self-organizing,
adaptive, and context-aware software systems (or, adopting a recently highly
hyped term, promoting the development of autonomic computing systems
[77]). While a number of researches are proposing several specific solutions to
promote adaptivity, self-organization, and context-awareness in specific sce-
narios, general-purpose approaches are still missing.

The need for novel general-purpose approaches – overcoming the limita-
tions of traditional approaches – appears even compulsory when considering
that most of the sketched scenarios will have a dramatic impact on every
moment of our life. Thus, characteristics such as security, robustness, and
ease of maintenance and testing, which only the presence of a suitable and
sound software engineering methodology can ensure, will become even more
necessary.

In a pervasive computing world, we should prevent companies from sending
spyware in our computer-enriched furniture to spy on our habits, and we
should avoid viruses that compromise the functionality of our car navigation
system or of our sensor-based health-care network. In the emerging global
information economy, we should prevent viruses and denial of service attacks
that will possibly cause losses for billions and create unbalances in the world
economy.
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Whenever a system malfunctions, the classic solution, “shut down and
restart the system”, will not be an option. What if a traffic light control
system needs to be repaired? Should we turn off all the traffic lights in a
city? In some situation, the simple fact of finding and turning off everything
may be impractical: what if the environment has been sprinkled with tiny
microsensors?

Even worse, these systems are inherently difficult to test and debug. Emer-
gent unexpected situations can arise only when the system is actually deployed
and off-line simulations can lead to wrong forecasts. Moreover, in a dynamic
system where components are mobile and wirelessly interacting, debugging is
extremely difficult [32]: who is talking with whom? What happened in the
past?

Considering the road ahead, any suitable approach for designing and de-
veloping systems exhibiting all the above characteristics will necessarily imply
the capability of engineering prespecified, coherent, and useful behaviors from
the cooperation of an immense number of unreliable parts interconnected in
unknown, irregular, and time-varying ways and situated in dynamic opera-
tional environments.

The following chapter starts from these considerations and outlines the
fundamental role that the adoption of a proper coordination model may have
in this process.



3

The Role of Coordination and the Inadequacy
of Current Approaches

In the previous chapter, we have identified the need for novel approaches
to software engineering, promoting adaptive self-organization, and context-
awareness. Now, we start to analyze the important role that will be played
by the identification of proper coordination models in the process toward the
definition of a suitable innovative software engineering approach.

In general terms, a coordination model identifies the mechanisms and the
policies according to which an ensemble of “actors” can orchestrate the over-
all activities. Such an orchestration include mechanisms and policies for both
exchange of information and synchronization of activities. The study of co-
ordination models goes beyond computer science [86], in that also behavioral
sciences, social sciences, business management, and logistics somewhat strictly
deal with how various types of actors (e.g., animals, humans, trucks) can prop-
erly coordinate with each other.

In this book, we obviously focus on the coordination of computational
actors, i.e., the components of distributed applications and systems. For the
sake of simplicity, we will often adopt the generic term “agent” to indicate any
component of a distributed network scenario hosting a computational activity
that needs to coordinate with other components. These will this include actual
software agents, processes in a distributed application, peers in a P2P network,
as well as mobile devices and computer-based sensors (or, which is the same,
the system-level processes running over them). Such a generalized adoption
of the agent term, though, is not arbitrary [165]. In fact, it refers to entities
with some degree of autonomy in execution, interacting with other entities,
and situated in some context/environment. That is, entities matching the
canonical definition of agents provided by the agent community [162].
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3.1 The Fundamental Role of Coordination Models and
Infrastructure

Whatever the scenario of interest, agents acting in the context of distributed
applications and systems have the primary need to interact and coordinate
with each other to achieve their goals. In all the scenarios described in the
previous chapter, coordination between the agents constituting the system
has a fundamental role.

• In the micro scale, where each single agent (i.e., micro device) has lim-
ited power and resources, coordination is mainly required to let the agents
cooperate to accomplish tasks that exceed their capabilities as single indi-
viduals. In the “pipe repairing” application (described in Subsect. 2.1.1),
for example, no single agent is large enough to repair a hole in the pipe;
they must cooperate to aggregate into a suitable structure to fix the hole.
As another example, in almost all sensor network applications, coordi-
nation between single sensors is enforced to exceed the sensing power of
each single device or to implement power saving policies. Sensors, in fact,
by coordinating with each other, can average their measures to wash out
environmental noise, or can coordinate duty cycles to save battery energy.

• In the medium scale, agents are the applications running on handheld,
wearable, and embedded devices. Coordinating their activities is at the
core of a lot of pervasive computing applications, where humans can take
advantage of a proper orchestration of distributed activities to improve
their interactions with the surrounding environment. Consider, for exam-
ple, the case of a housewife who “asks” the kitchen for suggestions about
what she could prepare for dinner. The answer could be provided by having
a computer-based fridge analyze what food is in it, by having computers
embedded in the kitchen’s shelves do the same, and by having them all
exchange this information and cooperatively verify on an electronic recipe
book what can be prepared on this basis. That is, answering to the house-
wife question implies a proper coordination of activities among the various
pervasive computing devices in the kitchen.

• In the global scale, again, coordination is of primary importance. For
example, in Internet-scale P2P applications, agents (i.e., peers) need to
coordinate with each other in order to dynamically discover communica-
tion partners and to autonomously engage direct or third-party interaction
patterns. For example, every kind of routing problem (whether on a real
network [20] or on an overlay virtual network [120, 129]) can be easily
regarded as a minimal coordination problem: autonomous nodes must co-
operate, forwarding each other packets, to let the packets flow from sources
to destinations.

The pervasiveness of coordination activities and their primary role in
achieving global application goals in any distributed application and system,
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clearly make the identification of proper coordination models of fundamen-
tal importance. Not surprisingly, the research area of coordination models
and middleware is particularly crowded and attracts researches from differ-
ent communities like agents [56], software engineering [58], and distributed
computing systems [57].

Coordination activities may vary from simple mutual exclusion policies
to access shared resources to complex distributed artificial intelligence algo-
rithms for collective problem solving. But, whatever the case, the design and
development of complex distributed applications always call for the identifi-
cation of a coordination model facilitating the overall design and development
process. In the case of the emerging scenarios of interest to this book, such a
coordination model should be able to facilitate adaptive self-organization of
activities, and should be complemented by proper middleware to support the
execution of distributed applications.

In particular, we think that any coordination model and the associated
supporting middleware should provide

1. suitable mechanisms to enable coordination, i.e., interaction and synchro-
nization mechanisms;

2. suitable means to promote context-awareness;

With regard to the first point, coordination requires by definition some
form of communication between agents and some form of synchronization of
activities. Besides sharp means to enforce communication and synchronization
(e.g., messages, semaphores, etc.) one should also account for less obvious
means, i.e., indirect interactions mediated by an environment (also known as
“stigmergy”) or behavioral interaction (i.e., indirect interactions induced by
agents observing each other’s actions).

With regard to the second point, a coordination model for dynamic and
open scenarios also requires some forms of context-awareness. In fact, any
agent has to be somehow aware of “what is around,” i.e., its context, to
meaningfully work in a specific operational environment, and to properly
combine efforts with other agents. However, when agents are embedded in
a possibly unknown, open, and dynamic environment (as in the case of the
depicted emerging scenarios), they can hardly be provided with enough a pri-
ori up-to-date contextual knowledge, and should be supported in the process
of dynamically acquiring it.

The above two points, interaction mechanisms and context-awareness, are
indeed strictly intertwined, in that contextual information can be commu-
nicated only by the available interaction mechanisms. With this regard, it
is worth anticipating that on the one hand, indirect interaction mechanisms
appear much more suited for coordinating activities in open and dynamic sce-
narios, in which agents can appear and disappear at any time. In fact, these
models uncouple the interacting entities and free them from the need for di-
rectly knowing each other to interact. This promotes spontaneous interaction,
which is the basic ingredient to support self-organization. On the other hand,
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for spontaneous indirect interactions to take place in an adaptive way, agents
must somehow affect the surrounding environment by their actions in a way
that can be somewhat perceived by other agents. That is, indirect interactions
require the capability of affecting the context and of perceiving the context.

As a simple example, in cooperative distributed robotics, a lot of imple-
mentations rely on robots interacting by merely observing each other’s actions.
Robots can acquire a picture of the surroundings with their cameras and, us-
ing such a picture, decide what to do without any explicit communication
being involved [67].

In addition, the characteristics of modern distributed scenarios analyzed in
the previous section also alert us that any coordination model, for being effec-
tive, should also promote locality both in interactions and in the acquisition
of contextual information. In fact, for systems which can be characterized by
a large number of decentralized agents, any approach requiring global-scale
interactions is doomed to fail. Scalability and ease of management can be
properly supported only by a model in which most interactions occur at a
local and localized scale. In the simple case of cooperative robotics, for in-
stance, one cannot rely on the fact that each robot sees and understands the
actions of all other robots: that could work only for small environments with
full line of sight, and in any case the presence of a large number of robots
would challenge the limited capabilities of robots.

3.2 An Exemplary Case Study Application

To exemplify and fix ideas on what has been discussed so far, it may be
useful to introduce a case study application. The chosen application involves a
pervasive computing scenario, and in particular a computer-enriched museum
in which tourists, while visiting it, can exploit PDAs or smart phones to get a
better and more immersive experience. A number of devices embedded in the
museum can provide tourists with a sort of interactive guide, but they can
also be exploited by museum guards for the sake of monitoring and control.

In particular, for tourists, the pervasive services provided by the museum
infrastructure may be of help to retrieve information about art pieces, effec-
tively orient themselves in the museum, and meet with each other (in the case
of organized groups). For museum guards, the pervasive services can be used
to improve their monitoring capabilities over art pieces and tourist actions,
and to coordinate each other’s actions and movements. In the following, we
will concentrate on two specific representative problems: (i) how tourists can
gather and exploit information related to an art piece they want to see; and
(ii) how they can be supported in planning and coordinating their movements
with other, possibly unknown, tourists (e.g., to avoid crowd or queues, or to
meet together at a suitable location).

To this end, we assume that (i) tourists are provided with a software agent
running on some wireless handheld device, like a PDA or a cell phone, giving
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them information on art pieces and suggestions on how and where to move;
(ii) the museum is provided with an adequate embedded computer network.
In particular, embedded in the museum walls (associated either with each
art item or each museum room), there are a number of computers capable
of communicating with each other (by wired or wireless links) and with the
mobile devices located in their proximity (e.g., by the use of short-range wire-
less links); and (iii) both the devices and the infrastructure hosts are provided
with a localization mechanism to find out where they are actually located in
the museum; this could be implemented by some kind of cheap mechanism re-
lying on well-known algorithms based on radio or acoustic signal triangulation
[50].

Despite this coarse description we think that this kind of case study cap-
tures in a powerful way features and constraints of next-generation application
scenarios:

• It can be of very large size. In fact, in huge museums there can be thou-
sands of embedded electronic devices and hundreds of tourists with mobile
devices. There can be multiple systems concurrently running within the
museum computer infrastructure (e.g., light and heating control systems)
and other systems connected to these other services. In addition, since a
huge museum can have multiple sections managed by different organiza-
tions, some degree of decentralization may also be present.

• It represents a very open and dynamic scenario. In fact, a variable num-
ber of unknown tourists may enter and leave the museum at any time,
each following unpredictable schedules and visiting plans. In addition, the
museum too can exhibit high dynamics, in that huge museums very often
restructure their topology to host temporary special exhibitions, and very
often art pieces are moved from room to room and new art pieces are
added.

• The need for context-awareness is intrinsic in the goals to be pursued by
tourists and museum guards when exploiting the infrastructure, in that
they all somewhat relate in understanding what is happening in the mu-
seum and act accordingly.

The above characteristics carry on a number of implications. Despite the
high dynamics of the scenario, the system should be robust and flexible. When
embedded hosts break down, wireless networks have glitches, or other unex-
pected malfunctioning occurs, the system should exhibit a limited and gradual
decay of performance. When special exhibitions take place or new art pieces
are introduced, the system should immediately reflect the new configuration
in the way it provides its services, and without any temporary unavailability.
Whenever a tourist enters the museum, he must be immediately allowed to
take advantage of the museum services.

From the viewpoint of the museum infrastructure, one cannot rely on
manual configuration and reconfiguration for the above requirements to be
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fulfilled. In fact, the human efforts required to do that would be nearly con-
tinuous and dramatically expensive. Also, for very large museums, the time
required for such reconfigurations would lead either to temporary unavailabil-
ity or to services providing obsolete information. The only feasible solution
is to have the system be able to autonomously configure its operational pa-
rameters in response to changed conditions, in an adaptive and context-aware
fashion, without requiring human intervention and without exhibiting per-
ceivable service malfunctioning.

From the viewpoint of tourists, they must be properly enabled to access
all the available information in an up-to-date way, and they must be given the
possibility of understanding how to move in the museum. Clearly, this should
be done on the fly for each tourist, by having his mobile device spontaneously
connect with the embedded infrastructure, and by having the whole system
dynamically provide personalized services (e.g., “Since you are interested in
both Egyptian art and Greek sculpture, here the best path for you to follow
based on current crowd conditions”). Also, tourists and museum guards should
be enabled to dynamically coordinate with each other (e.g., “All students of
my class please report to me!”). For this to occur, tourists and museum guards
must be able to start interacting possibly without knowing each other a priori
(e.g., “Anyone here interested in discussing Egyptian art?”) and in a context-
aware way (e.g., “Alice, this is Bob, let’s walk toward each other to meet
in between”). Again, since we cannot assume any possibility of centralized
control, all these types of context-aware interactions must be promoted by
the system in an adaptive way without requiring any manual configuration.

As an additional note, it is worth noting that even testing and debugging
a system of that kind is extremely difficult. That would imply accounting
for an uncountable number of possible situations (e.g., what is the typical
group behavior of a class of children visiting the museum? What happens
when someone shouts “fire!” in a packed room?). For this reason, testing
should also follow a different approach. Rather than trying to account for all
possible situations to verify that the system is flawless, one should structure
the system so as to make it able to dynamically adapt itself to face any
unexpected situation.

To be successful, any approach to designing and developing a system ca-
pable of exhibiting the above characteristics should rely on the choice of a
proper coordination model and by a corresponding supporting middleware
infrastructure. The model should promote spontaneous interactions among
agents that possibly do not know each other a priori (e.g., a new art piece
that connects to the museum infrastructure, or two tourists with common
interests that want to meet to discuss with each other) and should enforce
context-aware interactions in an expressive way, to ensure that any dynamic
adaptation of the system and any coordination activity (e.g., a group of mu-
seum guards that wants to monitor in a coordinated way different areas of
the museum) properly reflect the current conditions of the system and of the
other agents in it.
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In the rest of this chapter, we will refer to the above case study to evaluate
the inadequacy of current coordination models and middleware to face the
complexities of modern scenarios. Moreover, from time to time in the book,
we will again revert to this case study to ground the discussion.

Although the case study focuses on pervasive computing (which also un-
veils our specific specific area of interest) it introduces issues which are of a
very general nature. In fact, it is analogous to a number of different scenarios,
e.g., traffic management and forklift activity in a warehouse, where navigator-
equipped vehicles can guide their pilots on what to do; mobile robots and
unmanned vehicles exploring an environment; spray computers having to or-
ganize their relative positions and activity patterns; software agents exploring
the Web, where mobile software agents coordinate distributed researches on
various Web sites. Therefore, all our considerations will be of a more general
validity.

3.3 Inadequacy of Current Approaches in Supporting
Coordination

Most coordination models and middleware used so far in the development
of distributed applications appear, in our opinion, inadequate in supporting
coordination activities in dynamic network scenarios, such as those described
in the previous chapter and in the above case study. In the following para-
graphs, we are going to survey various coordination models and middleware
to illustrate their inadequacies from a software engineering perspective. The
analysis will be mainly focused on evaluating how those models and middle-
ware provide agents with contextual information and whether the information
provided is suitable for supporting effective coordination activities.

We identified three main general classes of coordination models encom-
passing almost all the proposals. These include (i) direct coordination models,
i.e., message passing and client-server ones; (ii) shared data space models, i.e.,
tuple space ones; and (iii) event-based models. The implementation of mid-
dleware infrastructures to support a specific model within a class can be very
different from each other (e.g., centralized vs. distributed, or using propri-
etary vs. open protocols). Still, they are mostly equivalent from the software
engineering viewpoint, in that the overall design of an application developed
adopting a specific middleware would not be substantially affected by being
ported on a different middleware relying on a coordination model of the same
class.

3.3.1 Direct Coordination Models

Models based on direct coordination promote designing a distributed applica-
tion by means of a group of agents that can coordinate by directly communi-
cating with each other in a direct and explicit way, by message passing or in
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a client-server way (i.e., adopting some kind of remote procedure call mech-
anism). Client-server middleware systems like Jini [65], and message-oriented
middleware like UPnP [150] and JADE [10], are examples of middleware in-
frastructures rooted on a direct coordination model.

The model

Since, from a software engineering point of view, all the implementations of
direct coordination models are rather similar, here, for simplicity, we will focus
the description according to the terminology adopted by the Jini middleware
(see Fig. 3.1). At the end of this section we will briefly review the main
differences between client-server and message passing implementations.

The main service offered by direct communication models, like Jini, is
lookup and discovery. The main idea at the bottom line of this service is
to provide agents with a shared middleware in which they can store their
identities and capabilities, and in which they can look for other identities and
declared capabilities to find suitable interaction partners. In particular, this
service can be implemented by means of either white or yellow pages.

• A white page server basically provides a database where agents can store
their name together with the network address and port they are listening
to. Agents connect to the server either to publish themselves on the net-
work by storing their own identities, or to look for the address of agents
with which they want to interact. After obtaining such information agents
can communicate directly (i.e., through sockets) with each other. Although
this service decouples the agent symbolic names from the host in which
they are running, it actually requires an a priori (i.e., compile time) ac-
quaintanceship between the agents.

• A yellow page complements white pages, by allowing an agent to associate
a machine readable description of their capabilities with their network
address. This allows a better decoupling of agent interaction, in that an
agent can look for the specific service it needs, disregarding the identity
of the agent providing that service.

In Jini, for example, a specific lookup and discovery server provides the
above functionalities. To give agents access to the server it is possible to install
it at a well-known network address, or the agents can start a local network
broadcast search.

Once an agent connects to a newly discovered one, a communication prob-
lem arises: the agents need to talk the same language. Earlier proposals, like
Jini, adopt a client-server approach: agents export an interface (in the object-
oriented sense) and other agents can invoke methods on that interface disre-
garding the methods’ actual implementation. More recent proposals like JADE
[10] do not encode the agents’ interaction by means of method invocation, but
by means of formatted text messages. Agents receiving such messages must
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be able to understand the message syntactic and semantic content to decide
which action to undertake. Such understanding is typically promoted by the
adoption of shared ontologies between agents [10].

Discovery

Discovery

Discovery
Register

Register
Lookup

Use

Lookup Service

Client

Service

Service

Fig. 3.1. Direct coordination: Jini main operations

Inadequacy

One problem of direct coordination approaches, as promoted by the adoption
of the Jini middleware or of an alike middleware, is that agents have to interact
directly with each other and can hardly sustain the openness and dynamics
of near future computing scenarios. Firstly, explicit and expensive discovery
of communication partners – as supported by directory services – has to be
enforced for enabling agents that do not previously know each other to inter-
act. Secondly, agents are typically placed in a “void” space: the model, per
se, does not provide any contextual information: agents can only perceive and
interact with (or request services from) other agents, without any higher-level
contextual abstraction.

In the case study scenario, tourists have to explicitly discover locations of
art pieces and of other tourists. Also, to orchestrate their movements, tourist
must explicitly keep in touch with each other and agree on their respective
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movements by direct negotiation. These activities require notable computa-
tional and communications efforts and typically end up with ad hoc solutions
– brittle, inflexible, and nonadaptive – for a contingent coordination problem.

To better clarify these ideas, let us focus the attention on the meeting
problem in the museum case study. Specifically, let us consider the case in
which a group of agents wants to meet in the best room according to the
current locations of the agents (i.e., at the center of gravity of their current
positions). The pseudo-code in Fig. 3.2 implements an agent performing the
meeting application by exploiting the services of a Jini-like middleware.

01: // register myself to the discovery middleware

02: middleware.register(this)

03: // get a reference to the other agents in the meeting group

04: for every name in the meeting group

05: agent[i] = middleware.get(name)

06: end for

07: // get the museum map

08: museum = middleware.get(MuseumMap)

09: //proceed with the meeting

10: while not meet

11: // find where the other agents are

12: for every agent in agent[]

13: location[i] = agent[i].getLocation()

14: end for

15: // compute the best room for the meting on the basis

16: // of the agent current locations and museum map

17: room = computeBestRoom(museum, location[])

18: // move toward the meting room

19: goTo(museum, room)

20: end while

Fig. 3.2. Pseudo code of the meeting application with a direct coordination mid-
dleware

Looking at the pseudo-code, the problems inherent in direct coordina-
tion models are immediately evident. First of all, the system relies on global
middleware services that can be difficult to implement and can represent a
bottleneck or a single point of failure. Secondly, the system does not cope
gracefully with situations in which agents can dynamically join or leave the
meeting group (in rows 4-6 and 12-14, the members of the meeting group are
supposed to be fixed). Thirdly, a notable decision burden is left to the agents.
Agents have to exchange information about their current positions and eval-
uate by themselves the best room for the meeting, by merging information
about the museum map and other agent current locations (row 17). Moreover,
they have to implement some navigation (i.e., routing) algorithm to move to
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the destination room within the museum map (row 19). Whenever some con-
tingency occurs or some new information is available (i.e., a room in the path
of an agent is discovered to be so crowded that it should be best avoided), the
agents have to explicitly renegotiate a new meeting point.

For all these reasons, direct coordination models are not suited to effec-
tively support agent coordination activities in dynamic scenarios.

3.3.2 Shared Data Space Models

Coordination models based on shared data spaces support agent interactions
with the mediation of localized shared data structures, which agents can read
and write, and which could also be used for representing contextual informa-
tion. These data structures can be hosted in some data space such as a tuple
space, as in EventHeap [66], JavaSpaces [39], and TSpace [83], or they can
be carried by agents themselves and dynamically merged with each other to
enable interactions, as in Lime [112] or XMiddle [96].

The model

Let us refer to the tuple space model, the most general and widely used model
based on shared data spaces.

A tuple space is a shared, associatively addressed, memory space, orga-
nized as a multiset, i.e., as a bag of tuples. The tuplespace concept was origi-
nally proposed in the context of the Linda coordination language [43], and has
recently received renewed attention because of several innovative proposals,
like Sun’s JavaSpaces [39].

The basic element of a tuple space system is the tuple, which is simply a
vector of typed values, or fields. Templates are used to associatively address
tuples by pattern matching. A template (often called anti-tuple) is also tuple,
but with some (zero or more) fields in the vector replaced by typed place-
holders (with no value) called formal fields. A formal field in a template is
said to match an actual tuple field if they have the same type, whatever
the value in the actual field of the tuple. If the field of the template is not
formal, both fields must also have the same value to match. Thus, a template
matches a tuple if they have an equal number of fields, with types respectively
corresponding, and each field of the template matches the corresponding tuple
field.

A tuple is created by an agent and placed in a tuple space by a write prim-
itive (called in in the original version of Linda). Tuples are read or extracted
by a tuple space with read and take primitives respectively (the latter called
out in the original version of Linda), which take a template and return the first
matching tuple. Since a tuple space is an unstructured multiset, the choice
among multiple matching tuples is arbitrary and implementation-dependent.
Most tuple space implementations provide both blocking and non-blocking
versions of the tuple retrieval primitives. A blocking read, for example, waits
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until a matching tuple is found in the tuple space, whereas a non-blocking ver-
sion will return a “tuple not found” value if no matching tuple is immediately
available.

Tuple spaces provide a simple, yet powerful mechanism for agent coordi-
nation. Tuple space-based programs are easier to write and maintain, because
tuple-based interactions uncouple interacting agents. Destination uncoupling
is enforced because the creator of a tuple requires no knowledge about the fu-
ture use of that tuple, i.e., about which other agent will read that tuple. Time
uncoupling is enforced because tuples have their own life span, independent of
the life cycle of the processes that generate them, or of the processes that may
read them in the future. These two types of uncoupling enable time-disjoint
processes and processes that do not know each other to coordinate seamlessly.

In addition, tuple-based coordination models provide for notable flexibility,
which is an important requirement for open and dynamic software systems.
Lacking a schema or a predefined organization, a tuple space does not re-
strict the format of the tuples it stores or the types of data it can contain,
thus making it suitable for unexpected types of interactions. In addition, the
scalability of a tuple space system is provided by the complete anonymity of
tuple operations. No one has to keep track of connected processes to a specific
tuple space. Thus, it is possible to conceive systems based on a multiplicity
of independent localized tuple spaces [112], to enforce locality in interactions
(see Fig. 3.3).

Agent

Agent

Agent

Shared Space
Shared Space

Take

Take

In

In

Read

Fig. 3.3. Shared data space model: main operations on a tuple space, as provided
in Javaspaces
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Inadequacy

When adopting a tuple-based coordination model (i.e., when developing appli-
cations exploiting a middleware relying on tuple-based services), agents are no
longer strictly coupled in their interactions, because shared tuple spaces me-
diate interactions promoting uncoupling. Also, a shared localized tuple space
can be effectively used as a repository of local, contextual information. Still,
such contextual information can only represent a strictly local description of
the context that can hardly support the achievement of global coordination
tasks.

In the case study, one can assume that the museum provides a set of
tuple spaces, storing information such as a list of nearby art pieces as well
as message tuples left by the other agents. Tourists can easily discover what
art pieces are near them, but to locate a distant art piece they should query
either a centralized shared tuple space or a multiplicity of localized tuple
spaces, and agents have to internally synthesize all the information to compute
the best route to the target. To meet with each other, tourists can build an
internal representation of the other people’s positioning by accessing several
distributed data spaces, by reading tuples reporting about their presence, and
then by locally computing a path in the museum. However, the availability of
such information does not free them from the need for negotiating with each
other to orchestrate movements.

The pseudo-code in Fig. 3.4 implements an agent performing the meeting
application by accessing a shared (Javaspaces-like) tuple space middleware.
Here, we have assumed the presence of a global space (whether provided by
a specific server or obtained by merging agents’ private spaces) on which all
the agents can post and retrieve information in the form of tuples. It is rather
easy to see that this kind of middleware is much more suited to manage
open meeting groups than direct coordination middleware. In fact, the space
uncouples the interaction between the agents in the meeting group (on rows 7-
9, the agent retrieves tuples independently for who actually wrote them), and
somehow provides a suitable means by which to access contextual information
(i.e., the location of other tourists). However, in our opinion, a key problem
is that agents are left alone in discovering relevant contextual information,
in evaluating and possibly negotiating a meeting room, and in navigating
across the museum (rows 12-14). This can lead to noticeable computational
and communication burden.

It is fair to say that models like MARS [22] and TuCSoN [121], by relying
on programmable tuple spaces, are better suited for dealing with coordination.
In fact, agents can program the middleware so that it can perform low-level
coordination tasks on the agents’ behalf. In the case study, for example, an
agent could program the middleware to properly aggregate relevant informa-
tion about other agent locations. In this way the agent would have access to
the already aggregated information without the burden of doing it on its own.
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01: // get the museum map

02: Tuple mapT = new Tuple("MUSEUM MAP")

03: museum = middleware.read(mapT)

04: // proceed with the meting

05: while not meet

06: // find where the other agents are

07: Tuple readT = new Tuple("MEETING", *, *)

08: Tuple[] locT = middleware.read(readT)

09: location[] = parse(locT[])

10: //compute the best room for the meting on the basis

11: // of the agents current location and museum map

12: room = computeBestRoom(museum, location[])

13: // move toward the meting room

14: goTo(museum, room)

15: // update my location

16: Tuple writeT = new Tuple("MEETING", this,this.getLocation())

17: middleware.write(writeT)

18: end while

Fig. 3.4. Pseudo-code of the meeting application with a shared data space middle-
ware

3.3.3 Event-Based Models

Event-based models relying on publish/subscribe mechanisms make agents in-
teract with each other by generating events and by reacting to events of in-
terest, without having them to interact explicitly with each other. Typical
infrastructures rooted on this model are Jedi [26] and Siena [23]. In [35] is
presented a complete survey on this kind of model.

The model

A software event is a piece of data generated to indicate that something has
occurred in a system, e.g., a user moved the mouse, or a datagram has arrived
from the network, or a sensor has detected that someone is knocking at the
door. All of these occurrences can be modeled as events, and information
about what happened can be included as attributes in the events themselves.

Event-based programming, i.e., writing software systems in terms of event
processing, is a commonly accepted practice: programming becomes a process
of specifying “when this happens, do that.” This is particularly evident in
graphics programming: if the mouse moved, move the cursor with it; if the
user clicks this button, execute that procedure.

The simplicity of event-based programming is a key to its success: iden-
tify the events of interest; identify who (which processes/objects/agents) are
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interested in handling those events; and identify what procedures event han-
dlers have to execute upon the occurrence of specific events. Events and event
handlers are coupled by exploiting a publish-subscribe schema: agents inter-
act by publishing events and by subscribing to the classes of events they are
interested in (subscriptions are associated with event handlers). An operating
system component, called event dispatcher, is in charge of collecting subscrip-
tions and events, and of triggering the proper reactions in event handlers (see
Fig. 3.5).

In distributed systems, event-based programming can be supported by
means of middleware services acting as event dispatchers, in charge of col-
lecting subscriptions from agents interested in specific classes of events, and
in charge of distributing events (i.e., in triggering reactions) to subscribers
whenever appropriate. A variety of schemas can be conceived for subscrip-
tions [26] (e.g., subscribing to specific classes of events, or to events whose
attributes match a specific template, or to events occurring at specific sites
and/or at specific times). A variety of solutions can also be conceived for how
to implement event dispatchers (e.g., centralized vs. distributed) and for how
to distribute events to subscribers (e.g., broadcasting vs. direct forwarding).

Whatever the solution adopted, event-based coordination models clearly
provide for full uncoupling among interacting entities (the same as tuple space
models), and also provide for an effective way to achieve contextual informa-
tion at runtime (indeed, an event represents something that has happened in
a context).

Inadequacy

The fact that event-based models promote both uncoupling (all interac-
tions occur by asynchronous and typically anonymous events) and context-
awareness (agents can be considered as embedded in an active environment
capable of notifying them about what is happening) represent important fea-
tures for large-scale, open, and dynamic systems.

In the case study example, a possible use of an event-based approach would
be to have each tourist notify his movements across the building to the rest
of the group. Notified agents can then easily obtain an updated picture of the
current group distribution in a simpler and less expensive way than required by
adopting shared data spaces. However, such information still relies on agents
for the negotiating of coordinated movements and does not alleviate their
computational tasks (i.e., in the case study, tourists still have to explicitly
negotiate their movements, as from the pseudo-code in Fig. 3.6).

It is rather easy to see that here agents are indeed provided with an ac-
tive middleware that notifies them about other agents’ movements (the react
method in row 9 is invoked by the middleware upon the detection of an agent
movement). However, agents need to process these events on their own and,
in this case, the computeBestRoom and goTo methods can be source of com-
plexity, brittleness and inflexibility.
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Subscribe

Event Dispatcher
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Fire Event

Trigger Reaction

Match!

Agent

Agent

Agent

Fig. 3.5. Event based model: publish-subscribe operations

3.4 Requirements for Next-Generation Coordination
Models and Systems

In this chapter, we have outlined the fundamental role of coordination for
the engineering of adaptive self-organizing applications. At the same time,
we have shown how current coordination models and infrastructures appear
inadequate to the needs of emerging computing scenarios.

To summarize, the key characteristics that a proper coordination model
should exhibit include

• the uncoupling of application agents, to properly facilitate spontaneous
interactions and coordination activities in an open world;

• the integration of expressive means to acquire context-awareness, in or-
der to facilitate agents in actually exploiting such information for their
application purposes;

• the promotion of locality in interactions, to support scalability in large-
scale and decentralized systems.

In the following chapter, we introduce field-based coordination as a poten-
tial candidate meeting the above requirements.
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01: main() {

02: // get the museum map

03: museum = middleware.read(map)

04: // subscribe to other agents movements

05: Event newLocation = new Event("MEETING",*,*)

06: middleware.subscribe(newLocation)

07: }

08:

09: react(Event newLocation) {

10: // update my internal representation of the agents distribution

11: location[].add(newLocation.source, newLocation.location)

12: //compute the best room for the meting on the basis

13: // of the agents current distribution and museum map

14: room = computeBestRoom(museum, location[])

15: // move toward the meting room

16: goTo(museum, room)

17: // notify other agents about my movement

18: Event move = new Event("MEETING", this,this.getLocation())

19: middleware.fireEvent(move)

20: }

Fig. 3.6. Pseudo-code of the meeting application with an event-based middleware
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Field-Based Coordination

The general problem of the coordination models described in the previous
chapter is that they either couple interacting agents (direct coordination mod-
els) or provide contextual information that is not expressive enough (shared
data spaces and event-based coordination models). These models, for the
achievement of complex distributed coordination tasks and for the acquisition
of relevant contextual information, typically force agents to perform global
searches and execute complex algorithms to elaborate the acquired informa-
tion, to interpret it, and to decide what to do.

The meeting problem in the case study application (in which a set of
agents in the museum have to meet each other at a convenient place), for
example, requires agents’ notable efforts in acquiring information about the
museum floor plan and about the position of other agents in the meeting
group. Moreover, even when such information is a complete representation of
the operational environment, agents still have to execute possibly complex
algorithms to decide and/or negotiate where to meet and how to get there.

In our opinion, a proper coordination model for modern distributed com-
puting scenarios should promote mediated interactions by exploiting some sort
of distributed information that can be used as a means to enforce indirect (un-
coupled) interactions among agents and that can also be expressive enough to
represent contextual information in a form locally accessible and immediately
usable by agents. By simply accessing such local information, expressing even
non-local properties of the context or information communicated by remote
agents, an agent should be able to immediately recognize what is happening
and what it has to do. In the meeting application, if agents would be able
to locally perceive in their environment something like a “red carpet” leading
to a suitable meeting room, it would be trivial for them to exploit the infor-
mation: just walk on the red carpet! The key point, though, is how can one
create such a “red carpet,” i.e., how can one effectively represent context for
the sake of specific coordination problems?
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4.1 Key Concepts in Field-Based Approaches

An intriguing possibility toward the definition of a coordination model suit-
able for modern open and dynamic scenarios is to take inspiration from the
physical world, and in particular from the way masses and particles in our
universe move and globally self-organize their movements according to the
local contextual information that is represented by gravitational and electro-
magnetic fields.

In the physical word, particles interact in an uncoupled way, by the me-
diation of fields, and without having to know each other. Gravitational (or
electro-magnetic) fields represent information about other particles/masses in
the system in a sort of summarized contextual information. Contextual infor-
mation is distributed in fields, and fields – although expressing some global
information – are locally perceived by particles/masses. The local perception
of a field by a particle/mass is a sort of “red carpet”: a particle/mass can
know what to do, i.e., how to globally coordinate its movement with other
particles/masses, simply by following the local field’s gradient.

The above properties summarize the key concept of field-based coordina-
tion models: computational fields, propagated in a distributed environment
and locally sensed by agents, can provide suitable contextual information to
support agent coordination. Moreover one can also immediately recognize that
field-based coordination can meet the requirements identified at the end of the
previous chapter: uncoupled and local (i.e., scalable) interactions, and expres-
sive contextual information.

Finally, field-based coordination naturally promotes self-organization and
self-adaptation: agents, in fact, can be considered as entities that do not act as
individuals, but as entities that are part of a system in which fields naturally
force agents to globally coordinate their activities. This also implies that the
agents’ activities are automatically adapted to the environmental dynamics,
which is reflected in a changing field-based representation, without forcing
agents to re-adapt themselves. In the above “red carpet” metaphor, dynamics
of the environment are reflected in a “red carpet” that gets timely rearranged
as environmental conditions change. Agents do not worry about such changes;
they just keep on walking on the “red carpet.”

Operatively, the key points of field-based coordination models can be sum-
marized as follows:

1. Agents’ interactions are enabled and mediated by virtual “computational
fields,” propagated in the system by the agents themselves or by the
environment in which agents operate (typically with the support of a
proper middleware infrastructure). These fields are types of distributed
data structures conveying information about other agents and about the
context in general, and can provide agents with strong coordination task
tailored context-awareness.

2. The local value of propagated fields can be locally accessed by agents. This
can be used to acquire contextual information and also to have agents
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coordinate in a very simple way with other agents, i.e., by having agents
act and move following the “waveform” of these fields.

3. Openness and environmental dynamics are adaptively taken into account
in that any change in the system (e.g., a new agent entering the system
or a change in the network topology) may induce changes in the fields’
waveform that, consequently, tend to influence agents’ behaviors (point
2).

4. The above feedback cycle lets the system self-organize so that a global
coordination pattern is eventually achieved.

A field-based coordination model could clearly assume that, in a given en-
vironment/system, several different types of fields can exist and be propagated
for the sake of providing to agents different types of contextual information
and for supporting a variety of different coordination patterns.

With reference to the case study, one can consider that each museum
guide spread in the museum network a computational field identifying him,
and including a data value monotonically increasing as the field gets farther
from him (see Fig. 4.1). Any agent (i.e., tourist) perceiving the field of a
guide could thus locally sense how distant the guide is and where (in which
direction) he is. That is, this field – as simple as it can be – represents indeed
a very expressive contextual information.

Again with reference to the case study, let us consider another example
of agent coordination supported by fields. In particular, let us assume that a
group of tourists have to meet together at a convenient room in the museum,
and that each tourist propagates a field similar to the monotonically increasing
one of the museum guide just described. In this case, simply by having tourists
start following downhill the fields of the other tourists in the group, as if they
were gravitationally attracted by them, the result is that all tourists will
eventually meet at their center of gravity.

Dynamic changes in the environment and agents’ actions induce changes
in the fields’ surface, producing a feedback cycle that consequently influences
agents’ actions. Again, in application examples, should the museum guide be
moving around in the museum, the corresponding computational field would
be automatically updated and would, consequently, have any agent looking
for a guide readapt its movement accordingly. Should there be multiple guides
in the museum, they could decide to sense each other’s fields so as to stay as
far as possible from each other to improve their reachability by tourists, and
possibly dynamically reshape their formation when a guide, for contingent
problems, has to move or go away.

Further examples follow later in this book. Here, we emphasize that coor-
dinated actions in a field-based system – following its physical inspiration –
can be considered as expressions of a simple dynamic system: agents are seen
as balls rolling upon a surface, and complex coordinated actions or movements
are achieved not because of the agents’ will, but because of dynamic reshaping
of this surface.
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Of course, the physical inspiration of field-based coordination approaches
and the strictly local perspective in which agents act promote a strictly greedy
approach in their coordinated actions. In fact, agents act on the basis of their
local viewpoint only, disregarding that a small sacrifice now can possibly lead
to greater advantages in the future. Let us consider again the case study,
and the problem of having a tourist follow a guide to ask him information.
In a circular track, for example, a tourist looking for a guide who is moving
clockwise could, instead of greedily following the guide field downhill, decide
to move uphill to meet the guide counterclockwise. However, this is a general
drawback of distributed problem solving, where efficiency reasons often rule
out the possibility of globally informed decisions by distributed agents, rather
than a specific drawback of field-based coordination.

Fig. 4.1. The tourist Y follows downhill the field generated by the tourist guide X
(increasing with the distance from the source, as the numeric values in each room
indicate)
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4.2 A Survey of Field-Based Approaches

Several recent proposals in different areas are adopting approaches to en-
force context-awareness and distributed coordination that can be – to differ-
ent extents – assimilated to field-based coordination approaches. Without the
ambition of being exhaustive, in this section we survey a few representative
proposals in that direction.

4.2.1 Amorphous Computing

Domain Scenario

The amorphous computing project has been already introduced in Chap. 2
[1, 21]. In general terms, the project focuses on a visionary scenario in which
a massive numbers of identically programmed and locally interacting compu-
tational particles are randomly dispersed on a surface or mixed throughout a
volume, and are possibly capable of sensing and affecting the environment.

Particles are assumed to have limited resources and local information, and
to be subject to faults. All particles are programmed identically, although each
of them has an autonomous thread of execution, is capable of generating au-
tonomously random numbers, and has an internal local state that can depend
on past actions (i.e., a particle is a minimal agent). Particles can communicate
with each other by short-distance radio connections, or through the substrate
itself [21], or (in an even more visionary perspective) by emission of chemicals
[153]. One can generally assume that there is a communication radius r, large
compared with the size of individual particles and small compared with the
area in which they are distributed, and that two particles can communicate
if they are within distance r.

The key characteristic of amorphous computing, although it somewhat
resembles cellular automata [154], is that particles have no a priori knowledge
about the topology of the resulting communication network. No centralized
source of information is available, and there are no global clocks, and no global
beacons for triangulating positions. Thus, particles must engage in processes
of self-organization for all their activities.

Field-Based Approach

The research activity in amorphous computing is heavily inspired by biolog-
ical systems. Most biological systems, in fact, achieve coherent, reliable, and
complex behaviors from the cooperation of large numbers of identical organic
elements. One of the most fascinating examples is embryogenesis. Cells, all
with the same genetic code, reliably cooperate to form complex structures
by reproduction from a single cell [156]. There is a plethora of examples of
regulation in different organisms that can compensate for large variations in
cell size, cell numbers, cell division rates, and development time [30]. Even
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after development, many organisms preserve incredible abilities for self-repair
and regeneration.

A key mechanism adopted in embryogenesis is the use of gradients of
proteins to determine positional information and polarity. In the embryos of
many species (e.g., in the Drosophila), cells at one extreme of the embryo emit
a protein (called morphogen) that diffuses along the length of the embryo.
The concentration of this morphogen (morphogen gradient) is then used by
other cells to determine whether they lie in the head, thorax, or abdominal
regions [82], and these cells react by differentiating their behavior accordingly.
Different morphogens are used for determining the dorsal-ventral axis, wing
and limb development, and even leg bristle polarity. Gradients of morphogens
are believed to play an important role in providing position and polarity
information in many different organisms, and even in regeneration [156].

The concept of morphogen gradients can be clearly assimilated to that of
fields in field-based coordination. In fact, a morphogen gradient resembles a
distributed data structure that propagates through a network, by changing its
values as it propagates. Accordingly, it can be reproduced in an amorphous
network of computational particles and it can be used for a variety of purposes
related to self-organization of activities.

The key mechanism can work as follow. In a network of undifferentiated
particles, an initial “source” particle, chosen by a cue from the environment
or by generating a random value, creates a gradient by sending a message to
its local neighborhood with the morphogen name and a value of zero. The
neighboring particles forward the message to their neighbors with the value
increased by one, and so on, until the morphogen has propagated through the
entire population. Each particle stores and forwards only the minimum value
it has received for a particular morphogen name; thus the morphogen value
represents the shortest path from the source. The value provides an estimate
of distance from the source: a point reached in n steps will be roughly distance
nr away. The quality of this estimate depends on the density of the particles
and can be reasonably predicted for random distributions [105].

This very simple program can be used in powerful ways. By limiting the
maximum value of a morphogen, one can create regions of controlled size.
The morphogen can also be used to provide a sense of local orientation; a
particle can compare values in its local neighborhood to determine the direc-
tion toward or away from the source. More than one particle could be the
source for the same morphogen, in which case the morphogen value reflects
the shortest distance to any of the sources. Thus, if a single particle emits
a morphogen then the value increases as one moves radially away from the
particle, but if a line of particles emits a morphogen then the value increases
as one moves perpendicularly away from the line. In this way, complex spatial
patterning can be created by positioning without any change to the particle
program (see Fig. 4.2). The particles can also be programmed so that they can
selectively choose which morphogens to propagate. Thus, particles in a par-
ticular state can act as barriers to specific morphogens, or as obstacles around
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a) b)

Fig. 4.2. Morphogen Gradient: (a) Radially propagating from a source node; (b)
Propagating from a line of nodes thus creating vertical stripes equidistant from the
source line

which the morphogen must travel; or, similarly, morphogens can be limited
to propagate only within certain spatial regions. As an additional example,
the source particle can constantly produce a morphogen message, and have
the morphogen value stored by any agent lose significance if not constantly
reinforced. The result is that the morphogen values adapt as source particles
appear and disappear.

These are just a few of the ways in which morphogen gradients can be
used. The key point is that the described basic mechanism, which is also the
basic mechanism for field-based propagation in any network, can act as the
basis for many distributed self-organizing algorithms, e.g., self-establishment
of coordinate systems, distributed storage, and ad hoc routing [104, 105].

In general, morphogen gradients (and thus fields) are well matched to
amorphous and dynamic network settings, because the phenomenon of dif-
fusion at its basis is insensitive to the precise arrangement of the individual
particles, so long as the distribution is reasonably dense. In addition, if in-
dividual particles do not function, or stop broadcasting, the result will not
change very much, so long as there are sufficiently many left.

One of the most fascinating applications of morphogen gradients, al-
ready developed by the amorphous computer group, is about obtaining three-
dimensional shapes by letting a sheet composed of amorphous computer par-
ticles fold autonomously following origami techniques [102]. The idea is to
let particles spread several morphogen gradients across the sheet. The local
configuration of such morphogen gradients identifies where the sheet should
bend (see Fig. 4.3). Particles actually bend the sheet collectively, each trying
to locally deform the sheet (i.e., the particles’ local distribution).
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Fig. 4.3. (top) Origami program for folding a cup. (bottom) Simulation snapshots
of the actual folding. These pictures have been taken from [104]
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4.2.2 Modular Robots

Domain Scenario

A modular (or self-reconfigurable) robot is a flexible robot made up of a
collection of (typically simple) autonomous elements (actuators) connected
with each other and with some degree of freedom in their relative movements.

The key idea underlying modular robots is to have their components exe-
cute distributed control algorithms so as to coordinate their movements and
let a robot assume specific shapes or move according to some motion pattern
(i.e., gait).

The flexibility of modular robots is highly desirable for tasks to be per-
formed in hostile environments, such as fire fighting, search and rescue after
an earthquake, and battlefield reconnaissance. In these cases, robots can en-
counter unexpected situations and obstacles, hard to overcome for fixed-shape
monolithic robots. A modular robot, instead, could shape itself depending on
needs. For example, to pass through a hole, the robot can transform itself into
a sort of snake; to move through a difficult terrain, it can assume a circular
shape and move in a way similar to that of a tank; to enter a room through
a closed door, a modular robot may disassemble itself into a set of smaller
units, crawl under the door, and then reassemble itself in the room (see Fig.
4.4).

Fig. 4.4. Examples of different shapes a modular robot can assume. Images taken
from [159]

CONRO modular robots are one of the most interesting examples [133].
CONRO modular robots are made of a set of connectable modules, each
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computer-based, and each containing batteries, two motors, four pairs of IR
transmitters/receivers for communication and proximity sensing, and four
docking connectors to allow connections with other modules. Each module
has two degrees of freedom for pitch (up and down) and for yaw (left and
right). The state of a module is determined based on how it is connected to
other modules. Each module can self-determine its state locally by checking
to which links of the neighboring modules it is connected. This information
can be communicated among neighbors to establish a local topology in the
network.

Field-Based Approach

Several approaches to control shapes and movements of modular robots rely
on predetermined centralized control tables [160]. Although this is a com-
prehensive and simple mechanism, it can hardly deal with the intrinsically
dynamic nature of robot reconfiguration in dynamic and a priori unknown
environments. Control tables must be set up in advance, and every time the
configuration is changed, no matter how slight the modification, the control
table must be rewritten.

To increase the flexibility of controlling modular robots, the interesting
possibility adapted by CONRO robots is to exploit a biologically inspired
concept, very similar to that morphogen gradients (and, thus, representing a
field-based approach), i.e., the concept of “hormones” [133].

A hormone is a message that propagates in a system and that tends to
trigger different actions in the different subsystems in which it propagates,
leaving the execution and coordination of these triggered actions to the lo-
cal autonomous subsystems. For example, when a human experiences sudden
fear, a hormone released by the brain and propagated in the body causes
different actions, e.g., the mouth opens and the legs jerk. In particular, a hor-
mone is a message that has three important properties: (i) it has no specific
destination but floats in a distributed system, as a field; (ii) it has a life span
(and thus tends to vanish if not reinforced, which makes it different from the
morphogen gradients of the amorphous computing approach); and (iii) it can
trigger different actions at different receiving sites.

The actions caused by a hormone may include modification and relay of
other hormones, execution of certain local actions like bending an actuator,
or just ignoring the received hormone. It is worth noting that hormones as
used in modular robots are very different from simple broadcast messages
or content-based messages. Hormones are propagated signals that may be
modified, be delayed, or disappear while propagating from the source to the
rest of the system, and thus they are de facto fields. Given this, hormones
can be used, the same way as morphogen gradients and fields, to accomplish
self-organizing tasks that are beyond the abilities of conventional messaging
systems.
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To give an example, the so-called caterpillar gait is a motion pattern that
lets a snake-like modular robot advance as a “wave” of activity moves from
the head of the robot to its tail (see Fig. 4.5). This gait is achieved by having a
hormone propagate from the head to the tail of the robot at regular intervals
(or synchronized by other mechanisms). Such a hormone lets the pitch joints
of the robots assume the wave configuration that brings the robot forward.

Fig. 4.5. Caterpillar gait, in a chain-type modular robot composed of six actuators
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4.2.3 Routing in Mobile Ad Hoc and Sensor Networks

Domain Scenario

Wireless ad hoc networks and wireless sensor networks are very representative
examples of those classes of large-scale dynamic network scenarios discussed
in Chap. 2. Such networks have recently received growing attention because
of their promise of providing pervasive communication infrastructures that
are cheap and trivial to deploy. However, they challenge current approaches
to routing and network control, typically requiring manual configuration and
suited for fixed or slowly changing network topologies.

On the one hand, lacking any centralized point of control, nodes in ad hoc
networks must cooperatively self-organize routing and medium access func-
tions. On the other hand, nodes in ad hoc networks may be mobile (consider,
e.g., a network of PDAs carried by humans) or ephemeral (consider, e.g., the
limited lifetime of battery-powered sensors), inducing continual changes in the
network topology.

For these reasons, new routing algorithms inspired by new principles must
be conceived.

Field-Based Approach

In the last decade, a number of ad hoc network routing protocols have been
proposed, which usually dynamically build – by flooding the network – a sort
of routing overlay structure, and which then exploit this overlaid structure
for routing. Among the others, (i) “Gradient Routing (GRAd)” [116] and (ii)
“Directed Diffusion” [55] make a field-based metaphor in building the overlay
particularly explicit.

Gradient Routing is a routing algorithm specifically conceived for mobile
ad hoc networks. In very general terms, when a node “A” wants to send a
message to a node “B,” it actually floods the network with a field-like data
structure that holds, the source id, i.e., “A,” the message, and the number
of hops from the source of the message to the current node. Such structure
not only trivially hands off the message to “B” (since the message reaches
all nodes), but also creates a sort of overlay field leading back to “A,” to
be exploited for further uses. If node “B” wants to reply, it can just send a
message that follows the “A” field downhill toward node “A.” In this case no
flooding is involved. The field-like distributed data structures created in this
process can be used further also by other peers to communicate (see Fig. 4.6).
However, such a field-based data structure has a limited life, in that changes
in the network topology due to mobility may invalidate it. The next message
sent by “A” will eventually help in rebuilding it.

Directed Diffusion is a routing algorithm proposed in the sensor network
domain. Here the problem is how to collect sensed information from a vast
network of sensors dispersed in an environment. The idea is that a workstation
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at the edge of the network can inject a field-like data structure expressing an
interest for a particular set of events (“query” field). Sensors are able to route
relevant sensed information back to the workstation, exploiting the field data
structure as a guide with a mechanism similar to the one described above
for the Gradient Routing. Moreover, in this algorithm, the workstation can
reinforce some part of the fields, applying a sort of reinforcement learning
algorithm. This enables those sensors that have acquired “good” information
to report back to the workstation, while allowing other sensors to forget about
the “query” field (and thus save battery energy) if they are not able to provide
relevant information.
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Fig. 4.6. Field-based routing in mobile ad hoc network

4.2.4 Navigation in Sensor Networks

Domain Scenario

Sensor networks [33], besides being ad hoc networks with specific routing prob-
lems, have a wide range of potential applications. In particular, a network of
sensors distributed in a landscape can also be used as a distributed information
repository allowing users (people, robots, unmanned vehicles, etc.) to exploit
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this information to traverse the sensor-enriched landscape, as described in
[84].

A moving object can be guided, by distributed sensors across the land-
scape along a safe path, away from the type of danger that can be detected
by the sensors. The dangerous areas of the sensor network are represented as
obstacles. Danger may include fire, holes, distrusted people, etc. It is assumed
that each sensor can sense the presence or absence of such types of danger.
A danger configuration protocol running across all nodes of the network cre-
ates a danger map. It is not likely that the network will create an accurate
geometric map, distributed across the nodes. Instead, it is important for the
nodes in the network to provide some information about how far from danger
each node is. If the sensors are uniformly distributed, the smallest number of
communication hops to a sensor that triggers “yes” to danger is a reasonable
measure of the distance to danger.

The overall goal of this “danger avoiding” navigation is to find a safe path
to lead a user to a specific destination. This path can be either computed
offline by a planning algorithm, or it can be dynamically evaluated by a user
accessing online (e.g., by a wireless PDA) the closest nodes of the sensor
network.

Field-Based Approach

In [84], the “avoid danger” navigation has been implemented over a grid of
Mica Motes sensors [114] (see Fig. 4.7). In particular, a sort of field-based ap-
proach (called potential fields) has been conveniently used. In such a potential
fields approach, users move under the actuation of artificial forces. The goal
(i.e., the intended destination) generates an attractive potential field pulling
the user to it. The recognized obstacles generate a repulsive potential which
pushes the user away from them. The (negated) gradient of the total potential
is the artificial force acting on the user. The direction of this force at a point
in the landscape is the current best direction of motion from that point.

The potential fields in this approach are computed as follows. Each node
whose sensor triggers a danger diffuses the information about the danger to
its neighbors. The message includes the source node id, the potential value,
and the number of hops from the source of the message to the current node.
The propagation occurs with the basic mechanism of fields and morphogen
gradients: when a node receives multiple messages from the same source node,
it keeps only the message with the smallest number of hops; the current node
computes the new potential value from this source node; the node then broad-
casts a message with its potential value and number of hops to its neighbors.
After this bootstrap procedure, nodes may have several potentials from multi-
ple sources. To compute its current danger level information, each node adds
all the potentials.

The potential field protocol, can be used to build a plan offline of move-
ments across a landscape. Moreover, if the potential field information is con-
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Fig. 4.7. A Grid of motes suitable to be employed in a navigation application.
Image taken from [4]

tinuously adapted in response to sensor failures, to addition of new nodes
into the network, and to dynamic danger sources moving across the network,
then it is a precious source of contextual information. This information can
be used to guide a PDA-equipped user who connects online to the network to
get awareness of the current situation and dynamically plan his movements.
A user of the sensor network can rely on the information to choose the best
possibility from the returned values, i.e., to move to the direction correspond-
ing to the minimum value of potential danger. Such a path inevitably leads
the user to the goal (see Fig. 4.8).

4.2.5 Situated Multiagent Ecologies

Domain Scenario

Multiagent systems executing in the context of large-scale Internet applica-
tions are typically characterized by involving agents that do not know each
other and that have to interact and execute in a dynamic computational envi-
ronment. While most approaches still rely on direct communications between
agents (supported by heavyweight middleware) and on a minimal (sometimes
inadequate) modeling of the environment [162], some recent proposals are rec-
ognizing the importance of approaches based on appropriate environmental
abstractions for both interactions and situatedness. An interesting proposal
in that direction is the Multilayered Multi Agent Situated System (MMASS)
[6, 106], defining a formal and computational framework relying on a layered
environmental abstraction.

MMASS explicitly promotes the environment and the agents as first-class
entities. On the one hand, the basic MMASS environment is described by a



60 4 Field-Based Coordination

Px

0

2

3

4

5

5

4

5

4

3

2

1

1

1

2

4

Px

0

2

3

4

5

5

4

5

4

3

2

1

1

1

2

4

Fig. 4.8. Field-based navigation in a sensor network

network structure, made up of sites that may contain an agent. The main role
of this network is to provide agents with a suitable network of acquaintance on
which to ground interactions. On the other hand, agents are defined in terms
of their capabilities of perceiving the environmental properties and behaving
accordingly.

The key idea underlying the MMASS model is that, through a suitable
definition of physical and conceptual spatial structures, it is possible to ef-
fectively obtain context-aware behavior for modeled agents. In fact, different
spatial representations layered one over the other may be defined to model
different aspects of the agent environment. Concepts such as agent prefer-
ences, membership to groups or organizations, and assignment to tasks may
determine some kind of neighborhood or distance in an abstract space accord-
ing to specific aspects of their activities or preferences. This kind of modeling
naturally supports agent activities. Once such spaces have been defined, an
agent can interact with all the other neighbor agents in some specific space
(e.g., send a query for the file “Hey-Jude.mp3” to all the neighbors in the
“music” space).

To better clarify, let us focus our attention on an Internet file sharing ap-
plication (see Fig. 4.9). At the base level, agents are embedded in the physical
network space. Neighbor relationships are based upon the IP connectivity (i.e.,
two nodes are neighbors if they know each other’s IP addresses – they can



4.2 A Survey of Field-Based Approaches 61

open sockets to each other). Moreover, agents can build upon such physical
space several different logical spaces according to some criteria. Specifically,
agents can store in a specific table the IP addresses of the nodes that are
neighbors in a specific space. Provided with that information, agents can triv-
ially exploit it: if they want to send messages to neighbor nodes in some space
(e.g., the “music” space) they have just to access the corresponding table and
open the sockets.

In any case, it is worth reporting that the application scenarios originally
considered in MMASS were related to the simulation of artificial societies
and social phenomena, for which the physical layers of the environment were
also virtual spatial abstractions. Only recently did MMASS start considering
Internet-based application scenarios, where the physical layer is realized by
the available IP network and logical spaces are built in the way described
above [106].

Field-Based Approach

In MMASS, agents are provided with two interaction modalities. First, agents
that are adjacent in space can agree to perform a simultaneous change in their
internal states (in a way similar to that of cellular automata [154]). Second,
asynchronous interaction between agents, as well as access to contextual in-
formation, can occur by the mediation of fields diffused in the environment.

Fields in MMASS are conceived as signals that can be emitted by agents
and are spread over the environment according to a diffusion function related
to the specific field type. Field intensity is thus modulated throughout their
path from source to destination sites.

Agents are characterized by two methods with which to interact by means
of fields: emit, which allows an agent to add a field of a certain type in its site
and to let it diffuse according to the spatial structure of the environment and
of the field’s diffusion function; trigger, which allows the definition of a change
in the state of an agent that takes place when a specific field is perceived.

The general idea in MMASS is to exploit fields to define the different
environments where agents’ actions take place. Since fields can easily create
routing data structures (as depicted in a number of scenarios before), they
can easily create networks of acquaintance between agents, i.e., space in the
MMASS terminology.

In particular, following such an approach, different layers of acquaintances
can be established in a multiagent system. For example, in a file-sharing ap-
plication, each agent interested in, say, “mp3 files” could propagate a field
storing the keyword “mp3” and its own IP address. Upon the receipt of fields
marked with the keyword “mp3” other interested agents could store their cor-
responding IP address, thus creating a topology for a, let us call it, “mp3”
logical space. This could be represented in the first logical layer of Fig. 4.9.
Adopting a similar approach other fields could be propagated on such a novel
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established network creating, say, the “dance music mp3” network (i.e., sec-
ond logical layer). Changes in an agent’s preferences or internal state could
lead to the update of the networks.

Physical Layer

1st Logical Layer

2nd Logical Layer

Fig. 4.9. The MMASS layered environment

4.2.6 Coordination of Robot Teams

Domain Scenario

The systems surveyed so far exploit field-based coordination as an actual
mechanism to enforce coordination and context-awareness. That is, in the
above systems, some field-based data structure is actually propagated in a
distributed system (e.g., in the nodes of a network) either by agents or by
some sort of supporting middleware, to be sensed by distributed agents.

However, proposals exist that exploit field-based coordination as a pure
conceptual mechanism, without having fields propagated and without requir-
ing a supporting infrastructure, but simply as a way to better model and
engineer situated and coordinated behaviors.

Consider the case of a group of robots distributed in an environment,
having to orient themselves and to coordinate their movements. To interact
meaningfully, they have to exploit their sensing capabilities (e.g., cameras) to
acquire contextual information. In addition, if they do not have direct means
to communicate with each other’s (e.g., they do not have wireless network
interfaces) they necessarily have to coordinate with each other by detecting
each other movements and adapt their behavior accordingly (in a sort of
mediated, behavior-driven interaction).
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In these cases, robots could take advantage from interpreting the environ-
ment and the other robots’ behavior in terms of a field-based representation
and acting on the basis of fields. As a simple example, an agent seeing an ob-
stacle through its camera could represent it as a repelling field, whose strength
increases as the perceived dimensions of the obstacle increase. As another ex-
ample, it could perceive an object it has to carry as an attracting field. The
main advantage of this approach is that it promotes a clean separation of con-
cerns between the phase of processing sensorial stimuli (e.g., understanding
that an object is an obstacle) and the phase of acting on the basis of such
stimuli.

Fig. 4.10. Robocup competition. Images taken from [12, 74]

Field-Based Approach

The idea of fields driving robots’ movements is not new [79]. One of the
most recent reissues of this idea, the Electric Field Approach (EFA) [67],
has been exploited in the control of a team of Sony Aibo legged robots in
the context of RoboCup competitions (see Fig. 4.10). In this approach, each
Aibo robot builds a field-based representation of the environment from the
images captured by its two head-mounted cameras (which also provides for
stereo vision), and then decides its actions and movements by examining the
gradients of the so-built environmental representation.

Compared to previous approaches of robot coordination based on internal
field representations, EFA is more general in that it is not restricted only to
inter-robot coordination, but can be used for various other contextual actions
as well. In fact, the EFA field-based representation takes into account the
playfield itself (to force the robot to stay within the playfield), the ball (to
move and kick it), as well as the other robots (to interfere with opponent
actions).

In EFA, the inspiration from electromagnetic fields (also reflected in the
name of the approach) is due to the fact that each robot represents all the
perceived entities, except the ball, as positively or negatively charged entities,
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emitting the corresponding electric fields. Opponent robots and the playfield
border will be represented by negatively charged entities. The robot itself, its
mates, and the opponents’ goal will be represented by positively charged ob-
jects. Given this representation, each robot computes the electric field distri-
bution across the playfield, by combining the effects of all the electric charges
being modeled. The basic rationale at the bottom line of this representation is
that, following this approach, the robot represents “good” areas of the play-
field by means of a positive electric field, while it represents “bad” areas by
means of negative electric field.

The robot measures the electric field where the ball is located. For this
reason in [67] the ball is referenced as the probe. The robot aims at performing
some action to move the ball into areas where the field is more positively
charged. Since the opponents’ goal is the most positively charged object, this
approach should lead the robots to score.

There are two main actions a robot can undertake to move the ball toward
positively charged areas: if the ball is within reach the robot can kick the ball
toward the opponents’ goal or toward a mate robot; alternatively, the robot
can move so as to change the background field representation, and thus bring
the ball to more positively charged areas indirectly.

Following this approach EFA robots operate within this activity loop:

1. The robot updates its electric field representation on the basis of the
entities perceived.

2. The robot measures the field at the ball’s location.
3. The robot simulates internally the set of actions it can undertake (e.g., try

to kick the ball, move toward the ball, move toward the closest opponent
robot, etc.).

4. For each action, it computes the expected value of the electric field at the
expected final location of the ball. For example, if the robot simulates –
i.e., thinks – that kicking the ball will move the ball to the opponents’
goal, then that action will be associated with a very high electric field
value.

5. The action that obtained the greatest electric field value, i.e., the one that
is expected to bring the ball to the most positively charged place in reach,
is executed.

Adopting this field-based approach, the EFA robots are capable of non-
trivial actions such as passing the ball to each other (i.e., moving the ball
to a positively charged area closer to the opponents’ goal) and obstructing
opponents’ actions by moving between the opponents and their own goal (i.e.,
opposing a positive charge to the opponents’ field).
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4.2.7 Artificial Worlds

Domain Scenario

Another confirmation of the fact that field-based coordination is, other than
simply a coordination model, a reasonable abstraction to model coordinated
and situated contextual activities, comes from its adoption in the simulation
of artificial worlds, e.g., in videogames.

The sharper example comes from the specific solution to coordinate activ-
ities of virtual characters in the Sims [145] videogame. In the Sims, the main
goal for the player is to run a simulated life by creating and owning a virtual
person, shaping his family, building his home, and run his life (see Fig. 4.11).
To drive a character to act in the simulated city where he lives, the player in-
teract with the virtual world as is usual in videogames. For example, clicking
on an object of the virtual world (e.g., a television) makes a bunch of options
appear expressing actions that the character can do with that object (e.g.,
switching on the television, changing the channel). In addition, specific needs
of the simulated character that the player has to satisfy (e.g., the need to
sleep) appear as bars on the bottom of the screen. Keeping the owned virtual
character happy and having him run a successful life is the goal of the player.

Field-Based Approach

While the activities of the owned character are directly driven by the player,
a number of additional computer-driven non-player characters exists in the
Sims virtual world. For the activities of these non-player characters, the Sims
adopts a peculiar approach based on computational fields, called “happiness
landscapes,” spread in the virtual city in which characters live, and driving
their movements [70].

In particular, non-player characters autonomously move in the virtual Sims
city with the goal of increasing their degree of satisfaction by climbing the gra-
dients of specific computational fields. If a character is hungry, she perceives
and follows a happiness landscape whose peaks correspond to places where
food can be found, e.g., a fridge or a restaurant. After having eaten, a new
landscape will be followed by the character depending on her needs. Different
kinds of fields can have different extents. The slope of the bed extends all
the way across the house, while the pinball machine extends only a few feet.
A fatigued character will start climbing the slope toward the bed no matter
where she is; if she needs some entertainment, she will migrate to the pin-
ball machine but only if it is nearby. This provides quite realistic behaviors
for non-player characters, and also make their movements very easy to model
and enforce.

In addition to the Sims example, our research group has also successfully
experimented with a field-based approach applied to the Quake III Arena
videogame [92]. Quake III Arena (Q3A) [117] belongs to the kind of first person
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Fig. 4.11. Two snapshots of the videogame “The Sims” [145]

shooter (FPS) computer games. The player controls a character (bot) fighting
against other artificial bots (i.e., software agents) in a dungeon. The whole
point in the game is staying alive and killing opponents. The game provides
a first-person perspective on the current situation 4.12. What we have done
with this regard is modifying the algorithms adopted by evil bots (typically
self-interested and unable to cooperate with each other toward the capturing
of the player character) to have groups of evil bots coordinate their movements
according to a field-based approach. In particular, we have enforced the virtual
propagation in the environment (by both evil bots and the player character) of
computational fields that (as with the fields of tourists and museum guides in
the case study application discussed in Chap. 3) have a value that increases as
the field propagates farther from the source. Then, by having evil bots move in
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the virtual environment by following the gradients of these fields, we have been
able to enforce a variety of coordinated movements for bots, overall increasing
their capability of capturing the player character. For instance (see Fig. 4.12)
the evil bots in our modified version of the game are able to orchestrate their
movements and surround the player in order to leave him no escape.

In both Sims and Quake III Arena, the field-based approach is not ex-
ploited to actually coordinate activities of distributed agents (the execution
of these games and of all their characters is indeed centralized on a single
computer). Rather, it is used to effectively model the properties of a virtual
environment and to effectively promote context-aware virtual movements of
agents in it. This confirms the effectiveness of field-based coordination not
only as an interaction mechanism, but also as a modeling approach to facili-
tate engineering in a complex software system.

Bot

Bot Bot

Bot

Fig. 4.12. A snapshot of Quake III Arena. By means of field-based coordination,
the evil characters (bots) are able to effectively surround the player, blocking all the
exit doors

4.3 Swarm Intelligence as a Form of Field-based
Coordination

Researchers are paying an increasing attention to engineering approaches get-
ting inspiration from the behavior of social animals, e.g., ants and termites.
The interesting fact is that social animals – although not very intelligent
as individuals – are able to collectively solve a wide variety of different hard
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problems (e.g., finding food, using shortest paths to reach the nest, adaptively
organizing task division) in a very robust and flexible way.

Robustness arises in social animals because a large group can achieve goals
even when some individuals die or simply fail to behave as expected. Flexibility
arises from the fact that the patterns of interactions between the individuals
are not fixed once and for all. Rather, they dynamically reshape to adapt to
changing environments. These kinds of smart behaviors are often referred to
as behaviors of swarm intelligence [14], to stress the fact that they do not
emerge from the capabilities of individuals, but rather from the interactions
between individuals.

Swarm intelligence attracts computer scientists and software engineers
[108] because several problems solved by groups of animals have direct coun-
terparts in engineering and computer science: finding food strategies can be
exploited in an information retrieval context; the strategies used to find the
shortest path connecting two locations can be exploited in routing algorithms
for telecommunication and computer networks; mechanisms for ants’ division
of labor can be exploited in manufacturing or workflow management scenarios.
Therefore, it is no surprise that several works [3, 14, 15, 69, 76, 107] describe
specific applications of swarm intelligence in a variety of areas.

While the opportunity to exploit these new concepts has already been
spotted, the next challenge is to leverage their exploitation in a systematic and
engineered way. This is not a simple task and the research community is still
far from proposing a solution. A prerequisite to develop such a methodology is
to identify a common and general framework in which all the swarm intelligent
systems could fit.

From our viewpoint, field-based coordination can work as a unifying ab-
straction (and thus a general framework) for a large class of swarm intelligent
systems. In the rest of this section, we survey some widely known swarm in-
telligence behaviors (more deeply analyzed in [14, 107]) and show how can
they be modeled in terms of field-based coordination.

4.3.1 Wolves Surrounding a Prey

To capture a prey (e.g., a moose), a group of wolves tends to act in a coor-
dinated way, being able to surround the prey and leaving it no escape. The
wolves’ coordinated behavior can be explained in terms of swarm intelligence
without assuming long-range communication mechanisms or complex intelli-
gent decision making by wolves [107]. Wolves simply hunt for the moose trying
to maintain a suitable distance from other wolves. Simulations of this simple
strategy, with a moose that simply tries to escape by moving farthest away
from the nearest wolf, reproduce the actual behavior of a group of wolves in
nature.

In any case, it is also possible to model the same behavior in terms of a
field-based approach, by assuming that the moose and the wolves generate
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fields like the ones depicted in Fig. 4.13, updated in real time depending on
their movements and actual positions.

a) b)

Fig. 4.13. (a) Moose field. (b) Wolf field

Now, the moose behavior can be modeled by considering that the moose
tries to follow downhill all the wolves’ fields, to escape from them. More specif-
ically, it is possible to imagine that the moose adds the wolves’ fields together
and follows downhill the result. Similarly, each wolf tries to follow downhill
the fields of the other wolves and of the moose. In this way, a wolf is directed
toward the moose, but is also repelled from other wolves. This simple descrip-
tion is perfectly analogous to the description based on distances and, by a
proper tuning of the fields’ coefficients, can lead to the same results.

4.3.2 Birds Flocking

Flocks of birds stay together, coordinate turns, and avoid colliding into each
other, by following a very simple swarm algorithm [107]. Since similar coor-
dination problems may happen in air-traffic control, robot swarms, and un-
manned vehicles, flocking behavior in birds could be a source of inspiration
to these areas, and could be possibly addressed by using a similar algorithm.

The behavior of bird flocks can be explained by assuming that each bird
tries to maintain a specified separation from the nearest birds and to match
the nearby birds’ velocity. The flock is a self-constraining structure in which
each entity’s individual action simultaneously responds to and changes the
overall structure of the flock. Although each bird senses only the movements
of its nearest peers, its responses to these movements transitively propagate
to others, so that the system overall exhibits global coordination.

To model this strategy under a field-based modeling framework, it is possi-
ble to imagine that each bird generates a field like the one shown in Fig. 4.14a,
and that this field is updated in real time to match the bird’s movements.

Now, saying that birds have to stay a specified distance from each other
is equivalent to saying that birds have to follow the decrease of other birds’
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generated fields (see Fig. 4.14b). In fact the shape of the field constrains birds
to stay close each other in an almost regular grid; the movement of a bird and
the consequent change in the field it generates will force other birds to move
as well.

a) b)

Fig. 4.14. (a) The flocking field of an individual bird. (b) The birds moving in a
regular grid formation

4.3.3 Ant Foraging

Ant colonies are able to find food in any environment, and to carry this food
back to the nest. To do this, ants do not directly communicate with each
other. Rather, they indirectly communicate in a stigmergic way, by coopera-
tively constructing a network of pheromone (scent markers that many insects
generate) paths that connects their nest with available food sources [14]. The
global structure of paths emerges from the simple actions of the individual
ants that do not even know they are involved in this distributed building pro-
cess. Several authors spotted the possibility to exploit the technique used by
ants in this process in a routing or in an information retrieval context.

The swarm intelligent behavior of ant foraging works basically as follows.
Each ant that forages for food is able to produce two kinds of pheromones. A
home pheromone is produced after leaving the anthill wandering looking for
food. A food pheromone is produced when the ant goes back to the anthill
after some food has been found. Ants wander randomly following the food
pheromone when looking for food, and following the home pheromone when
bringing food back to the anthill. The overall system behavior is based on the
fact that pheromone tracks deployed by an ant can be exploited by the same
ant or by other ants in the future. The natural tendency of the pheromones
to evaporate if not reinforced allows the pheromone network to remain up-to-
date: when a food source is extinguished the corresponding pheromone trial
disappears, because it is no longer used and reinforced.
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To describe the ants’ foraging strategy under a field-based coordination
model, one should conceive pheromones in terms of deformation to distributed
fields. In fact, one can imagine that the environment in which ants move can
be considered as perceived by ants in terms of two initially flat fields. These
two fields, which can be named the home and the food fields, are generated
and spread by the environment itself. The environment reacts to ants’ move-
ments by wrinkling the fields’ surface, while ants’ movements are affected by
the “waveform” of the field. This feedback cycle constitutes the key to let the
system auto-organize. The algorithm followed by ants can in fact be restated
by supposing that each ant wanders, avoiding obstacles, following (probabilis-
tically) the decrease of the food field when it is looking for food and following
(probabilistically) the decrease of the home field when it is bringing food back
to the anthill. Then, to close successfully the feedback cycle, it is simply pos-
sible to imagine that the environment reacts to the ants’ presence, by locally
wrinkling the home field surface in correspondence with the points in which
ants looking for food are located and it wrinkles the food field surface at the
points at which ants carrying food are located. The form of the wrinkle is
depicted in Fig. 4.15a. Moreover, suppose that the environment is able to
control the deepness of the wrinkle, so that each new (or renewed) wrinkle is
deeper that all the wrinkles in its neighborhood.

Following these principles, ants’ movements create a network of channels
in the fields’ surfaces. In the food field surface these channels descend from the
anthill to the food sources, in the home field surface these channels descend
from the food sources to the anthill. In Fig. 4.15b a channel created by an
ant movement is shown. Of course this is a pure abstraction and a natural
environment cannot provide the described capabilities. However this does not
matter for our purposes, the aim is to demonstrate that the field model can
abstract these phenomena, and then use this model to build software systems
in an artificial environment, where these functionalities can easily be gathered.

Finally, to account for pheromone evaporation, it is possible to imagine
that each of the fields’ surfaces has some form of memory and it gradually
reshapes to its original flat form if untouched.

It is worth noting that this kind of field-based representation of ant for-
aging is the very one adopted in some routing mechanisms in MANET like
“Rumor Routing” [19] and in other swarm-inspired approaches and middle-
ware like “Anthill” [3] and “Swarm Linda” [98].

4.3.4 Ant Labor Division and Task Succession

In social insects, different activities are often performed simultaneously by
specialized individuals; this phenomenon is called division of labor. A key fea-
ture of division of labor is plasticity: the ratios of workers performing different
tasks can vary in response to internal perturbations or external challenges. A
simple model, which relies on response threshold, can explain how ants achieve



72 4 Field-Based Coordination

a) b)

Fig. 4.15. (a) A wrinkle induced on a field’s surface by the presence of an ant. (b)
The channel in the field surface created by the ant’s movement

flexibility and specialization in labor division [14]. Each individual has a re-
sponse threshold for every task; it engages in task performance when the level
of the task-associated stimuli exceeds its threshold; it drops a task when the
task associated stimuli falls under another threshold. In this way each ant
adjusts its duties according to the colony’s needs. Moreover, by performing
a certain task, individuals’ task-associated thresholds decrease. This simple
strategy is the key for specialization: the more an individual performed a task
in the past, the more likely the same individual will perform the task in the
future.

This example is particularly interesting and challenging for modeling with
field-based concepts, because it involves fields propagated in a space which is
not the physical space in which ants are embedded.

To model the above-described coordination task within the field-based
approach, it is possible to imagine that there exists a logical virtual space,
separated by the physical one, in which ants are embedded. This is a multi-
dimensional space containing one dimension for each of the possible tasks
in which an ant may be involved. If an ant can be involved just in three
tasks, let us say, Task A, Task B, and Task C, then this space will be the
one depicted in Fig. 4.16a. An ant is placed within the space depending on
its duties: suppose that each axis measures the fraction of the time, an ant
performs that particular task. So that the ant in Fig. 4.16a performs Task
A for 33% of its time, Task B for 33% of its time and Task C for 33% of
its time. Of course, in general, every ant is constrained to the subspace. An
ant can move in this space, but its movement does not correspond to an
actual movement in its physical space, but in a change in the ant’s duties. So,
for example, the movement depicted in Fig. 4.16b, represents an agent that
gradually stops doing Task C and starts doing Task B. Of course, fields can
be spread and sensed by ants also in this space. In particular the environment
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generates fields encoding the stimuli that encourage ants in performing a task.
Basically the shape of these fields is almost like a steep flat surface, decreasing
in the direction of the associated axis. The more urgent the task achievement,
the more the environment increases the steepness of the field surface. In Fig.
4.17, three different Task A’s associated fields are shown. The more steep the
surface gets, the more urgent Task A’s achievement becomes.

a)

Task C

Task B

Task A

33%33%

33%

66%
66%

66%

99%
99%

99%

b)

Task C

Task B

Task A

33%33%

33%

66%
66%

66%

99%

99%

99%

Fig. 4.16. (a) Representation of the task space. (b) Movement in the task space

Task B

Task A

Task A Field

Fig. 4.17. Task A stimuli-associated fields. The more urgent Task A’s achievement
becomes, the more steep the overall surface gets

The ants’ algorithm for division of labor can thus be restated by means of
the following actions: each ant evaluates a combination of the sensed fields, by
considering only those fields whose steepness where the ant is located exceeds a
certain threshold. Then the ant follows downhill the field obtained. As the ants
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move along the task space the field’s surface tends to get flattened, because
the associated tasks are achieved. The ants’ duties get stabilized in a suitable
configuration, until new stimuli and thus fields’ surfaces’ deformations appear.

As depicted in Fig. 4.17, a task-associated field’s surface is not actually
a steep flat surface, but its steepness increases both in the direction of the
associated axis and in the proximity of the associated axis itself. The reason
for this nonlinear shape is to enforce specialization. In fact, on the one hand,
by increasing the steepness in the direction of the associated axis, the more an
ant is placed in that direction (i.e., the more it is performing that task), the
more easy it will be for that ant to perform the task in the future because the
field’s steepness is particularly high there. On the other hand, the increase of
the steepness toward the axis itself (i.e., toward the zero) renders it easier for
“unemployed” ants, rather than already fully committed ants, to engage the
task.

4.4 Summing Up

In this chapter we have analyzed the key concepts of field-based coordination,
and have discussed how it exhibits those key characteristics that are necessary
for supporting adaptive self-organization in modern distributed computing
scenarios. This suitability is somewhat confirmed by the fact that, on the one
hand, a variety of recent proposals successfully adopt solutions that conform to
field-based ones, and on the other hand, several swarm intelligence behaviors
can be easily modeled in terms of field-based coordination.

The question of whether it is possible to generalize from the variety of
examples reported in this chapter and identify a single unifying model for field-
based coordination, integrating the necessary characteristics for supporting
the design and development of field-based coordinated applications in a variety
of scenarios, and suitable to model a variety of coordination patterns, is still
open.

The Co-Fields model, discussed in the next chapter, may represent a pre-
liminary answer to this question.
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Co-Fields and Motion Coordination

After having introduced, in the previous chapter, the key concepts of field-
based coordination and its potential in supporting context-aware coordination
activities in a variety of scenarios, we are now ready to go into details about
a specific approach to field-based coordination, developed within our research
group, i.e., Co-Fields.

Co-Fields (short for “Computational Fields”) is a model to promote field-
based coordination in pervasive computing scenarios [95]. In particular, Co-
Fields has been conceived to support, by a single general-purpose field-based
mechanism, context-aware execution and coordination in ensembles of dis-
tributed agents executing on mobile and embedded devices.

In this chapter, we show how Co-Fields promotes an easy modeling of field-
based coordinated applications by dynamic system formalism, and present
several examples of field-based coordinated applications in a pervasive com-
puting scenario. A specific emphasis is given to motion coordination, i.e., the
problem of orchestrating – in a robust and adaptive way – the movements
of agents distributed in the environment. Depending on the specific context,
such agents may represent humans, the mobile devices they carry, the software
running on the mobile devices, and mobile robots and sensors.

Despite its intrinsic orientation to pervasive computing, Co-Fields is in-
deed a very general model of field-based coordination, and most of what we
discuss in this chapter naturally applies also when Co-Fields is ported in
other scenarios, such as mobile ad hoc and sensor networks, modular robots,
or global multiagent systems.

5.1 The Co-Fields Approach

5.1.1 Structure of Fields

In Co-Fields, fields are considered simple data structures spread across an
environment according to a field-specific propagation rule. A multiplicity of
independent fields can coexist and be propagated in a network environment.
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Each field is characterized by an unique identifier (e.g., a number or a
string), by a location-dependent numeric value (expressing the strength of a
field at a specific location, and taking values that depend on the propagation
rule), plus any needed number of additional data (to encode and propagate
in fields any information that can be of use to application agents).

Fields are propagated in a network environment according to the sim-
ple mechanism already sketched in Chap. 4. A field is generated by a source
agent at a specific location in the network, with an initial numerical value of
strength. The field is then sent to all neighbor nodes in the network, which up-
date the strength according to the propagation rule and locally store the field.
Then, if this is the case (i.e., if the field requires to be further propagated),
these nodes send the field to their neighbors in turn, and so on recursively
until the field has been fully propagated. Each node stores and forwards a field
only if it has not already done so, to ensure that a specific field is propagated
only once.

The propagation rules for fields can be various and application-dependent.
Basically, a field can rely on any computable rule for how its strength value
will have to vary as it gets propagated. The strength can simply increase from
hop to hop in the network, either linearly or according to other monotonic
functions. The strength can increase up to a specific distance from the source
and can start decreasing. Or it could even vary according to some periodic
function of the distance from the source.

Fields can be static or dynamic. A field is static if once propagated its
strength does not change over time. A field is dynamic if its strength varies
either due to some time-dependent propagation rule or due to dynamics in
the network environment. For example, if the source of a field moves in the
network, the field it has generated should update its propagated structure
accordingly.

Co-Fields assumes that fields can be propagated in a network environment
by application agents to enforce some application-specific coordination task,
or by system-level agents to support specific system-level tasks and to provide
application agents with any needed system-level and contextual information.
In addition, Co-Fields assumes that agents have the capability of only locally
sensing fields and their strength gradients (i.e., they can sense the value and
gradients of fields only as they result from their current location).

5.1.2 The Coordination Field

Individual fields propagated in a network environment can give agents some
clue about some specific aspects of the context in which the agents execute.
For instance, coming back to the museum case study, a tourist looking for a
guide can simply perceive the field propagated by that guide to understand
if he is within the museum, how far he is, and in which direction he could be
found. In other words, individual fields encode in a distributed way some kind
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of location-dependent contextual information, which enables agents to act in
both context-aware and location-aware fashion.

However, the achievement of application-specific coordination tasks, in-
volving more complex activities than simply finding something in an envi-
ronment, is rarely relying on the evaluation, per se, of an existing individ-
ual computational field. Rather, in most cases, an application-specific task
relies on the evaluation of an application-specific combination of locally per-
ceived fields. We call this the coordination field. The coordination field can
be considered a new field in itself that, although not existing as an actually
propagated structure, is internally built by agents with the goal of reaching
a proper more comprehensive view of the context, tailored to the achieve-
ment of some application-specific tasks. Once a proper coordination field is
computed, agents can achieve their coordination task in a strict reactive way,
depending on the local configuration of the coordination field. For example, to
understand where the closest guide is, a tourist in the museum can compute a
coordination field resulting from the minimum of all locally perceived fields of
guides, and evaluate the gradient of such a coordination field. The evaluation
of a coordination field is particularly relevant when a group of agents has to
orchestrate its activities in a distributed way. In these cases, all the agents
involved in a specific coordinated task will spread their own fields in the envi-
ronment, and will act on the basis of some combination of all the fields spread
by the agents of the group (and possibly of additional fields spread by other
agents of the system).

With regard to distributed motion coordination, this translates to having
agents simply follow (deterministically or with some probabilistic rule) the
shape of their coordination field uphill, downhill, or along its equipotential
lines (depending on the specific problem) as if they were walking upon the
coordination field associated surface. For example, turning the attention to
the case study, museum guides can simply coordinate so as to stay as far as
possible from each other simply by (i) having each of them inject into the
museum the usual field having a value that increases with the distance from
the source, and (ii) following uphill a coordination field resulting from the
sum of all the fields of each guide.

In the following we will always refer to the coordination field as the only
field driving the agent actions and movements. In any case, we emphasize that
although agents act on the basis of the coordination field, they are nevertheless
preserved with the capability of perceiving the individual fields. Thus, when-
ever necessary, they can discriminate their actions also based on the analysis
of the individual components of a coordination field.

5.1.3 Practical Issues

Specific Co-Fields implementation issues related to, e.g., how fields can be
propagated in a specific environment, how can one ensure that a field is prop-
agated only once, and how can agents actually be made accessing and prop-
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agating fields, will be discussed in the following chapters. Nevertheless, we
anticipate here the discussion of some key infrastructure-related issues.

In general, to support field propagation, a proper infrastructure or mid-
dleware is required. In pervasive computing scenarios, such an infrastructure
could be defined by an ad hoc network of devices – embedded sensors and
PDAs carried by humans – through which fields propagate. However, it could
also be defined by a multitude of networked computers embedded in the en-
vironment and providing wireless connectivity to agents (e.g., to PDAs). The
shape of a field surface (i.e., its propagated distributed data structure) is
determined both by the field’s propagation rule and by the underlying infras-
tructure topology.

With reference to the museum case study, we can assume that (i) each
tourist and museum guide is provided with a software agent running on some
wireless PDA device in charge of giving him suggestions on how to act; and
(ii) the museum is provided with an adequate embedded computer network
to which agents connect to create and access field data structures. The num-
ber of the embedded hosts and the topology of the network may depend on
the museum, but the basic requirement is that the embedded network topol-
ogy mimics the topology of the museum plan (i.e., no network links between
physical barriers, like walls). In this way, the propagation of fields through
the infrastructure follows patterns that reflect the physical topology of the
museum. For example, an agent from anywhere can reach the source of a field
whose strength increases as it gets farther from the source, by simply follow-
ing the field gradient downhill. The absence of network links between physical
barriers is required to avoid agents stumbling into walls.

The above fundamental hypothesis is easy to achieve. In fact, one can
suppose that each node of the network infrastructure is provided with only
the IP addresses of the nodes that are spatial neighbors in the target museum
topology, and the communication between nodes is restricted to the provided
virtual neighbors. Or one can suppose that nodes spontaneously connect to
each other, but devices are able to detect and drop the network links crossing
physical barriers (e.g., by relying on signal strength attenuation or some other
sensor installed on devices).

5.2 Modeling Co-Fields Coordination

The physical inspiration of Co-Fields encourages modeling field-based coordi-
nated systems in terms of a dynamic system formalism. In fact, the gradient
of fields can be considered simply as kinds of forces, that locally act on agents
and influence their activities.

If, as in the museum case study (and more in general in pervasive com-
puting scenarios), the propagation of fields across a network reflects some
propagation in physical space, it is possible to define a field in analytical
terms, by writing the equations defining its values in space. Accordingly, by
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combining different fields into some coordination field function, it is possible
to model the virtual forces that act on agents at any location in the system.

This kind of modeling is particularly suited for motion coordination, in
that the virtual forces deriving from the coordination field and acting on
agents produce, as in real physical systems, a movement of the agents. In par-
ticular, for each agent in the system, one can write the differential equations
governing the motion of the agent, which will be driven by the gradient of a
specific coordination field. Once the analytical shape of a field is defined, writ-
ing and solving numerically the differential equations of the system is rather
simple (e.g., by proper software tools). This provides a very effective way to
analyze the system, and it can be regarded as an easy and powerful tool to
support the design of field-based coordinated applications, e.g., to quickly
verify that a coordination field correctly enables the achievement of a specific
coordination task, to experience its effectiveness in doing that, and to tune
coefficients.

5.2.1 Analytical Modeling

In more detail, it is rather easy to see that if we consider the agent i, denote its
coordinates in a particular space as (xi

1(t), x
i
2(t), ..., x

i
n(t)) and its coordination

field as CFi(x1, x2, ..., xn, t), the differential equations governing i motion are
in the form

dxi
j

dt
= v

∂CFi(x1, x2, ..., xn, t)
∂xj

(x1, x2, ..., xn, t) j = 1, 2..., n

if i follows uphill the increase of the coordination field, and

dxi
j

dt
= −v

∂CFi(x1, x2, ..., xn, t)
∂xj

(x1, x2, ..., xn, t) j = 1, 2..., n

if i follows downhill the decrease of the coordination field.
This is because the direction of the gradient of the agent’s coordination

field, evaluated toward the spatial coordinates, points to the direction in which
the coordination field increases. So the agent i will follow this gradient or will
go in the opposite direction depending on whether it wants to follow the
increase or the decrease of its coordination field. We indicate with v a term
that can model an agent’s constant speed.

The case in which the agent follows an equipotential line of the coordi-
nation field is slightly more complicated, because if the space dimension is
greater than two, we cannot talk about an equipotential line, but in general
we have to talk about an equipotential hypersurface. This hypersurface will
be the one orthogonal to the gradient of the coordination field evaluated only
toward the spatial coordinates, which will be thus a function of time:
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∇CFi(x1, x2, ..., xn)(t).

So, the only differential equation it is possible to write in this case is the
one that specifies that the agent’s movements belong to this hypersurface:

(
dxi

1

dt
,
dxi

2

dt
, ...,

dxi
n

dt
)·∇CFi(xi

1, x
i
2, ..., x

i
n)(t) = 0,

where the dot stands for the classical scalar product.
In the rest of this chapter we apply the Co-Field approach and the dynamic

system formalism to a number of motion coordination problems, contextual-
ized in the case study scenario. In such a scenario, the possibility of enforcing
motion coordination has a variety of applications: letting tourists effectively
move in the museum in a reasonable way, have group of tourists meet some-
where [22], have museum guides distribute themselves according to specific
spatial patterns [1, 101], or simply move without interfering with each other
[53]. However, motion coordination (and, thus, the described modeling ap-
proach) finds a variety of applications in a variety of other scenarios, from
self-assembly to routing in complex networks (see also the survey in Chap. 4).

Before proceeding, it is worth noting that, in realistic scenarios, the agents’
movements are likely to be constrained by environmental conditions (e.g.,
museum walls). Such constraints should be in our dynamic system model.
This could involve either some artificial force fields that constrain agents to
stay within the museum plan (without crossing walls) or a spatial domain
not based on simple �n, but on a more general and complex differentiable
manifold. We have successfully experienced the former approach, by defining
walls and other constraints in terms of fields with infinity values. However, due
to the complexities involved in the description of such equations, this chapter
considers and discusses the Co-Field modeling only in open, unconstrained
spaces, an approach which is anyway valuable to evaluate the potentials of a
specific motion coordination solution.

5.2.2 Simulating Co-Fields

To overcome the limitations of the dynamic system formalism, it can be useful
to complement the analytical description with some kind of simulation tools,
enabling one to easily verify the effectiveness of a Co-Fields coordinated so-
lution even in complex environments.

To this end, we have developed a multiagent simulation framework for
Co-Fields by exploiting the Swarm simulation toolkit [147]. Such frameworks
enables us to model any required spatial environment (e.g., any specific mu-
seum map), the presence in such environment of any needed number of fields
with any conceivable propagation rule, and the presence of any needed num-
ber of system-level and application-level agents each with its own goals (e.g.,
any number of tourists each with a specific plan of visit to the museum). Each
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of the next subsections will present, together with the analytical modeling of
various motion coordination tasks, some snapshots of the Swarm simulation
of these motion coordination tasks in various simulated museum maps.

5.3 Motion Coordination in Co-Fields

Let us now put Co-Fields at work in the museum case study, to show how it
can support a variety of motion coordination patterns in a robust, adaptive,
and self-organizing way.

5.3.1 Room Field: Plain Navigation

The aim of this application is simply to guide individual tourists across the
museum. Specifically, we assume that each tourist selects a personal schedule
with the rooms he wants to visit. Agents on the PDAs of tourists will give
them suggestions about where to go at a given time to visit all selected rooms
in the most effective way, without requiring the tourists to know anything a
priori about the museum map.

For the sake of this application, we need to introduce a specific field. The
room field is generated by every building’s room and has a value that increases
with the distance from the source room. The analytical description of this field
is the following: if we consider the room i to be located at the coordinates
(Xi

R, Y i
R) – the center of the room is taken as a reference – then we can describe

its room field by the equation

ROOMi(x, y, t) = (x − X i
R)2 + (y − Y i

R)2.

From an implementation point view (i.e., in the Swarm simulation), we
can assume that each ROOM field is just a data structure reflecting the hop
count from the source room (i.e., once propagated across the infrastructure,
it increases its strength value by one at every hop; see Fig. 5.1).

It is worth noting that the mathematical description of the fields does
not coincide precisely with the implemented one. This is because, dealing
with differential equations, we preferred to avoid discontinuities and to work
with simple functions. However, from a conceptual point of view, the two
descriptions are perfectly coherent despite these slight mismatches.

Given the above fields spread in the museum and given the list of rooms
a tourist wants to visit, realizing this application is straightforward. Users’
agents evaluate their coordination field CF as a minimum combination (fields
are combined by taking at each point the minimum one) of the room fields
ROOMi in which their users are interested:

CF (x, y, t) = min(ROOMi(x, y, t) : i = 1, 2, ..., n).
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Fig. 5.1. The ROOM field generated from the bottom left room and spread across
the museum

The coordination field produced models a surface having minimum points
in correspondence with the rooms the user wants to visit. The user follows
greedily the decrease of the coordination field, thus visiting the associated
rooms. In order not to get trapped in a minimum, when the user completes
the visit of a room, the corresponding field is removed from the combination
and so it does not represent a minimum any more.

Starting from these simple equations, one can write, for each of the agents
involved, the differential equations ruling the dynamic behavior of the system,
i.e., expressing the fact that agents follow downhill their coordination fields.
In the following we will restrict them to two dimensions for concreteness and
notation simplicity. They have the form{

dxi

dt = −v ∂CFi(x,y,t)
∂x (xi, yi) i = 1, 2..., n,

dyi

dt = −v ∂CFi(x,y,t)
∂y (xi, yi) i = 1, 2..., n;{

dxi

dt = −v ∂min(ROOMi(x,y,t):i=1,2,...,n)
∂x (xi, yi) i = 1, 2..., n,

dyi

dt = −v ∂min(ROOMi(x,y,t):i=1,2,...,n)
∂y (xi, yi) i = 1, 2..., n.

Such equations can be numerically integrated by making use of any suitable
mathematical software. In our studies, we used the Mathematica package [97].
Fig. 5.2 shows the results obtained by integrating the above equations for a
system composed of just one agent. In particular, the Fig. shows an xy-plane
with the trajectory of the agent (i.e., the solution of (xi(t), yi(t)) evaluated
for a certain time interval) while moving in an open space.

In addition, such a motion coordination approach can be easily simulated
with the simulation toolkit by modeling a specific museum map. Figure 5.3
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shows some snapshots of the simulation in a simple museum with one agent
(the white dot) moving in it.

Fig. 5.2. Solution of the navigation differential equations. Note that, due to the
mathematical difficulties involved in removing a field from the combination when a
specific room is eventually reached, the picture has been obtained by pasting together
the solutions of different equations, evaluated with “sequential” initial conditions

Fig. 5.3. Plain navigation: from left to right, different stages in the simulated
movement of an agent through the museum building.

5.3.2 Flock Field: Moving Maintaining a Formation

Let us consider the problem of having agents distribute in space (i.e., in the
museum) according to specific geometrical patterns (“flocks”), and to let them
preserve such patterns while moving. More specifically, agents can represent
security guards (or security robots) in charge of cooperatively monitoring the
building by spreading in it so as to stay at specified distances from each
other [53]. To this end, we can take inspiration from the work done in swarm
intelligence research [14] and described in the previous chapter. Flocks of
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birds stay together, coordinate turns, and avoid each other, by following a
very simple swarm algorithm. Their coordinated behavior can be explained
by assuming that each bird tries to maintain a specified separation from the
nearest birds and to match nearby birds’ velocity.

To implement such a self-organized coordinated behavior with Co-Fields
and apply it in our case study, we can have each agent generate a flock field
(FLOCK) whose strength assumes the minimal value at a specific distance
from the source, the distance expressing the intended spatial separation be-
tween security guards. The final shape of this field approaches the function
depicted in Fig. 5.4(top). Fields are always updated to reflect peers’ move-
ments. To coordinate movements, peers have simply to (i) locally perceive
the generated fields, (ii) combine sensed fields in a coordination field CF by
taking the field having minimum value, and (iii) follow downhill the gradient
of the resulting coordination field CF. The result is a globally self-organized
movement in which peers maintain an almost regular grid formation (see Fig.
5.4(bottom)).

Fig. 5.4. (top) Ideal shape of the FLOCK field. (bottom) When all the agents follow
other agents’ fields they collapse in a regular grid formation

Analytically, the FLOCKi field generated by an agent i located at
(Xi

P , Y i
P ) can be simply described as follows:
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d =
√

(x − Xi
P )2 + (y − Y i

P )2

FLOCKi(x, y, t) = d4 − 2a2d2,

where a is the distance at which agents must stay away from each other.
Starting from these simple equations, one can write, for each of the agents in
the set, the differential equations ruling the dynamic behavior of the system,
i.e., expressing that agents follow downhill the minimum of the FLOCK fields.
They have the form{

dxi

dt = −v ∂CFi(x,y,t)
∂x (xi, yi) i = 1, 2..., n,

dyi

dt = −v ∂CFi(x,y,t)
∂y (xi, yi) i = 1, 2..., n;{

dxi

dt = −v ∂min(FLOCK1,FLOCK2,...,FLOCKn)
∂x (xi, yi) i = 1, 2..., n,

dyi

dt = −v ∂min(FLOCK1,FLOCK2,...,FLOCKn)
∂y (xi, yi) i = 1, 2..., n.

The results of the numerical integration of these equations for different
initial conditions and for a system composed of four agents are displayed in
Fig. 5.5, which shows a common xy-plane with the trajectories of the elements
of the system (i.e., the solutions of (xi(t), yi(t)) evaluated for a certain time
interval). It is rather easy to see that the four agents maintain a formation,
keeping themselves at specified distances from each other.

Figure 5.6 shows the result of the motion coordination in the simulated
environment. Specifically, a simple museum map has been drawn, with three
agents (the white dots) moving in it. The formation consists in having the
agents remain in adjacent rooms from each other.

Fig. 5.5. Solutions of the flock fields’ differential equations, for different initial
conditions

5.3.3 Person Presence Field: Surrounding a Prey

The aim of this coordination task is to allow a group of agents (“predators”)
moving in the building to surround and eventually capture another agent
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Fig. 5.6. Flocking: from left to right, different stages in the movement of a group
of agents through the building, coordinating with each other so as to stay always in
neighboring rooms

(“prey”). As an example, one may think of a group of security guards in
charge of searching for and catching a child who got lost in a large museum
and who is frightened by big military men.

The task of surrounding a prey relies on a field that must be generated by
every agent in the building. We will refer to this field as the person presence
field(PRES), to stress the fact it represents the presence of a person in the
building. The PRES field simply has a strength value that increases monoton-
ically as the distance from the source person increases. Specifically, as already
discussed, such a field can be realized as a distributed data structure that
propagates while keeping the hop count from the source.

The analytical description of this field is straightforward and can be rep-
resented as the fields depicted in Fig. 5.7. If the agent i is at the coordinates
(Xi

P , Y i
P ), then it generates a PRESi field whose equation can be written as

PRESi(x, y, t) = (x − X i
P )2 + (y − Y i

P )2.

Person Presence Field

Museum Plan

Fig. 5.7. Person presence fields (PRES) in a building
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Now, if we consider the prey’s coordination field CF prey, it can consists of a
(negative) linear combination of all the predators’ fields. The prey runs away
from the predators, by following the decrease of the resulting coordination
field:

CF prey(x, y, t) =
n∑

i=1

−PRESpred
i (x, y, t),

where PRESpred
i is the person presence field of the predator agent i.

Similarly, if we consider each predator’s coordination fields CF pred con-
sisting of the linear combination between the prey’s field and all the other
predators’ fields (negative), then a predator is attracted toward the prey, but
avoids other predators:

CF pred
i (x, y, t) = PRESprey(x, y, t) +

n∑
j=1,j �=i

−PRESpred
i (x, y, t),

where PRESprey is the person presence field of the prey agent.
Obtaining the differential equations governing the system is now just a

matter of substituting the fields’ analytical description together with the co-
ordination field’s description in the differential equations describing the field-
based model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxprey

dt = −vprey ∂CF prey(x,y,t)
∂x (xprey, yprey),

dyprey

dt = −vprey ∂CF prey(x,y,t)
∂y (xprey, yprey),

dxpred
i

dt = −vpred ∂CF pred
i

(x,y,t)

∂x (xpred
i , ypred

i ) i = 1, 2..., n,

dypred
i

dt = −vpred ∂CF pred
i

(x,y,t)

∂y (xpred
i , ypred

i ) i = 1, 2..., n.

The results of the numerical integration of these equations, in the case of
three predators and one prey, are displayed in Fig. 5.8, which shows a common
xy-plane with the trajectories of the elements of the system (i.e., the solutions
of (xi(t), yi(t)) evaluated for a certain time interval). Here we can see (Fig.
5.8(left)) that if the predators do not repel one another they are not able to
surround the prey and all reach the prey from the same direction. In contrast
(Fig. 5.8(right)), if they repel each other, they reach the prey from different
directions, surrounding it.

Figure 5.9 shows the result of the motion coordination in the simulated
environment. Predator agents surround the prey without leaving any escape
path, by simply maintaining a certain distance from each other.
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Fig. 5.8. Surrounding a prey: predators that simply follow the prey without enacting
any coordination strategy are not able to surround the prey (left); predators being
repulsed by other predators’ fields are able to surround the prey (right)

Predators

Prey Prey

Predators

Fig. 5.9. Surrounding a prey: from left to right, different stages in the movements
of a group of three predator agents, coordinating with each other so as to surround
a prey agent

5.3.4 Crowd Field: Load-Balancing

The aim of this coordination task is to allow the users to avoid queues while
visiting the museum. For this reason their agents will drive them to visit the
rooms in their schedule by trying to avoid crowded areas. At the global scale,
this realizes a load-balancing policy between users and the museum’s rooms.

To this end, we need to introduce the crowd fields(CROWD), measuring
the amount of crowd in a room. Such a field is assumed to be evaluated by
system-level agents in the infrastructure, by manipulating the already intro-
duced person presence fields (PRES) spread by all the people in the building.
The analytical description of the CROWD fields is a bit more complicated
than the previous ones, because we are trying to abstract as a continuous
field an entity that is strictly coupled with the discrete nature of the space
considered.
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Room Generated Field

Building Plan

Crowd Field

Fig. 5.10. CROWD field in a building

The crowd field CROWDi for a room i, in fact, should in principle have a
constant strength value in the area of a room and drop to zero (or to another
value) outside that area. However, in order to avoid discontinuities, we model
the CROWDi field generated by the room i at the coordinates (X i

R, Y i
R), by

means of the following function (see Fig. 5.10).

CROWDi(x, y, t) = ki
ce

−hc((x−Xi
R)2+(y−Y i

R)2)

where hc is chosen so that the strength of the field outside the room is almost
0, while ki

c > 0 is a coefficient that represents how much crowded the room is.
It is important to understand that, because of its role, ki

c cannot be a fixed
coefficient, but it must vary over time to reflect the different crowd conditions,
so in general ki

c = ki
c(t). For our purposes ki

c(t) is simply given by the number
of people present in room i at time t (whose coordinates are within the room’s
perimeter) normalized to the dimension of the room. It is clear that the ki

c(t)
defined in this way is an effective measure of how crowded a room is.

Eventually, the global crowd field CROWDg can be defined by means of
the sum of all the individual rooms’ crowd fields:

CROWDg(x, y, t) =
∑

i∈rooms

CROWDi(x, y, t).
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Clearly, if all agents always follow the CROWDg field downhill, the overall
result is (as in a diffusion process) a global convergence toward a balance of
the crowding conditions in the museum rooms.

To realize an effective service to tourists, we need to combine this process
of escaping from crowds to the plain navigation application described above.
So, if an agent wants, at the same time, to visit the room in its schedule and
to avoid crowd conditions, it can use the following coordination field:

CF (x, y, t) = (1 − w)·min(ROOMi(x, y, t) : i = 1, 2, ..., n)+

w·CROWDg(x, y, t)

The first term of the coordination field tends to attract the agent toward
the rooms in its visit schedule, while the second tends to repel it from crowded
areas. The weight w can be used to specify the relevance of the crowd field, and
we assume it can be specified by a tourist by the help of some user interface.
For w = 0, the load-balancing mechanism is turned off and agents proceed
toward their closest destinations in the “greed” path, disregarding crowded
areas. If w is low, the agents will proceed toward their destination rooms
following a “greed” path most of the time, and being diverted to alternative
paths only in the case of very crowded conditions. As w gets higher, alternative
(possibly longer) paths are suggested more often, whenever the “greed” path
will be a bit crowded. For w = 1, agents ignore their visit schedule and simply
move to balance the load in a diffusion process.

The result of the numerical integration of the differential equations is de-
picted in Fig. 5.11. Here an agent is willing to proceed from (0, 0) to (10, 0). If
it does not consider crowd (Fig. 5.11(left)) it follows a straight line from source
to destination (eventually queuing in the middle). Otherwise, it is able to avoid
the crowded area in the middle, by walking around it (Fig. 5.11(right)).

Figure 5.12 shows the result of the motion coordination in two differ-
ent simulated environments. On the left, the crowd is not considered in the
agents’coordination field and thus crowds and queues arise. On the right, the
crowd term is considered and thus crowds are avoided.

The Co-Fields enforcement of load-balancing sharply proves the already
claimed advantages of field-based coordination in general and of Co-Fields
in particular. First, it is an expressive means to achieve context-awareness.
By means of a very limited number of fields, and with only local perception,
agents can nevertheless acquire a lot of information about the environment
(e.g., who is around and where, how many persons are around in the museum,
where are the less crowded zones). Second, fields (when properly combined
into a coordination field) represent a sort of red carpet for agents, which
simply have to follow the gradients of the coordination field to achieve their
coordinated goals (e.g., visiting specific rooms while avoiding crowds). Third,
it supports adaptive self-organization. Once agents know which coordination
field to evaluate, they can start evaluating and following it without knowing
anything a priori about the environment (e.g., the same coordination field
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can be effectively exploited independently of the specific characteristics of the
environment, as shown in Fig. 5.12), without worrying if the environmental
situation changes continuously (in fact fields, as in the load-balancing example,
are dynamically updated to reflect the current situation), and yet end up with
some sort of globally coordinated self-organized behavior.

Fig. 5.11. Load-balancing: (top) Trajectory followed by an agent when no crowd is
encountered. (bottom) Following downhill the coordination field the agent avoids a
crowd between itself and its target

5.3.5 Room Field and Crowd Field: Meetings

Let us turn our attention to a “meeting” service whose aim is to help a group
of users (e.g., tourists of museum guides) to dynamically find each other and
move to meet in a suitable room.

The definition of this coordination policy can rely on the already intro-
duced fields simply by changing the coordination field perceived by agents,
which proves the effectiveness of the Co-Fields choice of preserving the separa-
tion between individual and combined fields. Also, this coordination policy can
be fully integrated with the already described load-balancing policy based on
CROWD fields, so as to retain the capability of avoiding crowds when agents
are moving to meet with each other.

Several different policies can be thought related to how a group of agents
should meet.

1. The group of users wants to meet in a particular room x. This is the sim-
plest case and each of the user has to compute the following coordination
field:

CF (x, y, t) = ROOMx(x, y, t) + µCROWDg(x, y, t).

In this way every agent is directed to the minimum of the coordination
field that inevitably leads to the meeting room (i.e., x). The CROWDg

field term can enforce (with any desired weight µ) the load-balancing
policy in this case also.
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Fig. 5.12. Load-balancing in two different simulated museums. (left) When agents
do not exploit Co-Fields, crowded zones appear. (right) These crowded zones are
mostly avoided when agents follow the proper coordination field. The same load-
balancing policy can be applied by agents with the same effectiveness independently
of the specific museum topology, without having to change a bit in their code

2. The group of users wants to meet in the room where person x is located.
This is very simple as well: each of the users has to compute the following
coordination field:

CF (x, y, t) = PRESx(x, y, t) + µCROWDg(x, y, t)

where PRESx is the field generated by person x. In this way, every agent
is directed to the minimum of PRESx that leads to the meeting room
(where person x is located). It is interesting to notice that this approach
works even if person x moves after the meeting has been scheduled. The
meeting will be automatically rescheduled in the new minimum of PRESx.

3. The group of users wants to meet in the room that is between them (at
their barycenter, i.e., center of gravity). For this purpose each user i can
compose its coordination field by combining the fields of all the other
users:

CF (x, y, t) =
∑
i�=x

PRESx(x, y, t) + µCROWDg(x, y, t).

In this way all the users collapse toward each other, and they eventually
meet in the room that is the center of gravity of their starting positions.
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It is interesting to note that this “middle room” is evaluated dynamically,
and the evaluation process can take into consideration the crowd that
users may encounter at the meeting point or during the meeting process.
If a room is overcrowded, it will not be chosen as the meeting point even if
it represents the center of gravity. Similarly, if some users are slowed down
by crowds in their paths to the meeting room, the meeting room is auto-
matically changed to one closer to these unfortunate users. The strength
of this approach is that it is fully integrated with the field concept, and
that the overall coordination pattern enforced is the result of an adaptive
self-organized process, accounting for the current (possibly dynamically
changing) situation of the context.

By considering the third of the above three possibilities, the dynamic sys-
tem description for this problem is straightforward and the integration of the
differential equations is depicted in Fig. 5.13, showing how agents effectively
converge to each other at the center of gravity in an open space. Specifically,
it depicts the xy-plane where agents live, with the trajectories of the agents
of the system (i.e., the solutions of (xi(t), yi(t)) evaluated for a certain time
interval).

Figure 5.14 shows the various stages in the meeting process in two different
simulated environments. Again, the meeting policy applies to any museum
map, without requiring any a priori knowledge.

Fig. 5.13. Meeting: solutions of the system’s differential equations, for different
initial conditions

5.3.6 The Hint for a Methodology

It is interesting to notice that the equations governing the motion of a Co-
Field agent can be also interpreted as partial differential equations prescribing
what coordination field an agent has to sense in order to move according to a
specified pattern.

In theory this is very useful since, from a methodology point of view, it
enables answering the question: What kind of coordination field is required to
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Fig. 5.14. Meeting: from left to right different stages in the meeting process showing,
for two different museum maps, how agents converge toward each other

move following a specific trajectory? This is a fundamental question, since one
of the main problems of field-based approaches is the lack of a methodology
to help identify, given a specific motion pattern to be enforced, which fields
have to be defined, how they should be propagated, and how they should be
combined in a coordination field.

For example, if the coordination problem at hand requires an agent to
move along a sinusoidal path: {

x(t) = t,
y(t) = sin(t).

Then, one has basically to find a coordination field that solves the following
partial differential equations, and let it guide the agent:{

v ∂CFi(x,y,t)
∂x (x, y, t) = 1,

v ∂CFi(x,y,t)
∂y (x, y, t) = cos(t).

In principle, solving (numerically) the above equations provides a com-
plete representation of the required coordination field. It is worth noting that
although a closed-form smooth solution may not exist, close enough solutions
with possible discontinuities may do the work (see [163]).
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Although the above equations can provide useful hints, they do not solve
the methodology problem completely. In fact, one has to consider that the
coordination field is not something actually spread in the environment by an
abstract being. It is computed by an agent by combining the fields spread by
other agents and/or by some infrastructure. In turn, these fields may change
due to the agents’ movements. This feedback cycle, which is also the one at
the basis of the field-based approach, makes it rather difficult to devise which
fields are spread by the agents and how they should be composed to obtain
the coordination field satisfying the above equations.

Despite these difficulties, solving the above equations may provide useful
hints on which kinds of fields to employ to achieve a desired motion pattern.

Complementarily to the above approach, the immediate applicability of
Co-Fields is guaranteed by the possibility of getting inspiration from (and of
reverse engineering) a wide variety of motion patterns found in nature. We
have already outlined in Chap. 4 how phenomena such as, birds’ flocking,
ants’ foraging, etc. [14], can all be easily modeled with field-based coordina-
tion and, this, with Co-Fields (i.e., in terms of agents climbing/descending a
coordination field as the composition of some computational fields), and all
have practical application in pervasive and mobile computing scenarios.

Finally, it is also important to remark that the field-based approach is not
limited to a single coordination field to be followed from the beginning to the
end of the application. On the contrary, complex coordination actions can be
divided into simpler sub-applications and agents can shift between different
field configurations, incrementally realizing complex tasks [103, 141]. This, for
example, can be useful to realize more complex, non-greedy behaviors [109].

5.4 Important Remarks and Corrections to the Model

Let us now provide some insights and important remarks about the Co-Fields
model. Some corrections to what was previously stated are in fact required
to overcome some subtle, but critical issues. More specifically, we will provide
some guidelines dealing with (i) how different fields should be actually com-
bined to create an effective coordination field and (ii) how agents can cope
with false minima that are likely to arise in their coordination fields.

5.4.1 Propagate and Combine Fields

In the Co-Fields applications presented above we often adopted nonlinear ap-
proaches to combine different fields in a coordination field (e.g., the minimum
combination).

At first, when we started developing the Co-Fields model and the concept
of coordination fields, we ventured limiting ourselves to a natural, easy to
understand, and analytically tractable linear combination of fields. However,
although we had been able to actually model most coordination tasks with a
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linear combination of fields, we discovered that this basic approach can lead,
in several cases, to poor performances and even deadlocks. For this reason, we
decided to switch to nonlinear combinations. In this section we are going to
examine what problems arise with the linear combination and how they are
addressed in the actual implementation.

Before we proceed in the discussion, it is important to remark the fact that
many fields, like the ROOM ones, other than be possibly linearly combined,
are also linearly propagated. That is to say, they are fields whose strengths
increase, with a constant slope, as the fields get farther from the source (e.g.,
+1 per hop).

In the rest of this section we will focus on the plain navigation problem to
ground the discussion.

Problems with linear propagation and linear combination

There are mainly two problems arising when linearly propagated fields are
also linearly combined to obtain a coordination field. The first is that linear
propagation and linear combination tend to generate a coordination field with
a constant value in wide areas. This fact badly affects system performance
because when an agent is in a flat area it cannot be guided by the system
(there is no gradient decrease to follow). The second problem is that, even
disregarding the coefficients in the linear combination (e.g., all equal to one),
this approach generates a field surface whose minima have different values
and, worse of all, the minima can be deleted in the combination process.

To better explain these problems, let us consider the simple building map
depicted in Fig. 5.15. This map can be represented in just one dimension by
considering a line segment with wrapped edges. Such a representation is used
as the abscissa axis in Fig. 5.16 and Fig. 5.17. In the segment, the different
rooms from “A” to “R” will be reported, implicitly assuming that the edges
are also connected to form a ring.

Such a representation is particularly suitable to depict fields on the map.
For example, in Fig. 5.16, the black diamond line, represents the ROOM field
generated by room H and spread across the building.

Adopting this representation it is clear how the problems related to the co-
ordination fields arise. The problem of constant value in wide areas is depicted
in Fig. 5.16, the problem of minima deletion is depicted in Fig. 5.17.

Alternatives to linear propagation and linear combination

In order to overcome the above limitations there are mainly two options: (i) it
is possible to change the fields propagation rule or (ii) it is possible to change
the way in which fields are combined in the coordination field.

However, as we are going to prove, only the second possibility can lead to
good results. To justify this assertion, we have to consider that, both from a
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Fig. 5.15. A simple museum map that can mapped as a wrapped line of rooms
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Fig. 5.16. In this example, two fields are spread in the museum: ROOM C and
ROOM H fields (square and diamond lines, respectively). The coordination field
(triangle line) presents constant values in all the rooms from C to H and from M to
R. An agent in one of those rooms could not be directed by the coordination field

conceptual point of view and in order to avoid the minimum-deletion prob-
lem, the coordination field should appear as having equally deep minimum
points in correspondence with the minima of the fields being pursued (i.e., se-
lected rooms in the navigation example). A coordination field whose values are
higher or lower depending on the building topology is not only conceptually
unjustified, but is also the basis for the minimum deletion problem.

So our question is, is there a field propagation rule that generates equally
deep minimum points, once fields are linearly combined? The answer is no,
as demonstrated in the next few paragraphs. To perform this demonstration
we need to consider a building map slightly more complicated than the one
presented in Fig. 5.15. Specifically, let us consider the building plan in Fig.
5.18).

Now, consider the value the coordination field assumes in rooms A, B,
and C, under the hypothesis that the agent is interested in visiting all the
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Fig. 5.17. In this example, three fields are spread in the museum: ROOM C, ROOM
H and ROOM I fields (square, diamond, and cross lines, respectively). The coordina-
tion field (star line) has only one minimum point corresponding to room H. Minima
associated with rooms C and I have been deleted in the combination process

Building Map

B C

A

Fig. 5.18. An example building plan

big rooms, but not the corridors (i.e., smaller rooms). If we indicate with p(x)
the value assumed by a room field on the xth hop then we have that the
coordination field in A, B, and C, which will be called CoordA, CoordB, and
CoordC, is ⎧⎨

⎩
CoordA = 4p(1) + 4p(2),
CoordB = 2p(1) + 3p(2) + 2p(3) + 1p(4),
CoordC = 3p(1) + 3p(3) + 2p(3).

The previous requirements mean solving the following sets of equations:⎧⎨
⎩

CoordA = CoordB,
CoordA = CoordC,
p(1) ≤ p(2) ≤ p(3) ≤ p(4);
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⎩

2p(1) + 3p(2) + 2p(3) + 1p(4) = 4p(1) + 4p(2),
4p(1) + 4p(2) = 23p(1) + 3p(3) + 2p(3),
p(1) ≤ p(2) ≤ p(3) ≤ p(4),

where the second is required to lead to a meaningful guide. Unfortunately, the
only solution for this set of equations is p(1) = 0, p(2) = 0, p(3) = 0, p(4) = 0,
which does not make sense in our context. This proves that even with very
simple building maps the solution based on changing the propagation function
is not viable.

In contrast, by changing the way in which agents evaluate their coordina-
tion fields it is very easy to solve the above problems.

For the sake of visualization simplicity, let us turn the attention back to
the simple museum plan of Fig. 5.15. Instead of adding the different fields’
values, their minimum is taken as the coordination field (see Fig. 5.19). This
approach guarantees that all the minimum points are preserved and have the
same value.
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CF = min(C+H+L)

Fig. 5.19. In this example, three fields are spread in the museum: ROOM C, ROOM
H, and ROOM L fields (square, diamond, and circle lines, respectively). The coor-
dination field (cut line) is obtained by considering, at each point, the minimum of
the propagated fields. This minimum combination maintains all the minima

5.4.2 Escaping from an Attraction Basin or Following an
Alternative Path

A potential problem that may affect the load-balancing and the meeting strat-
egy (if the latter is modified to take crowd into account) relates to the emer-
gence of spurious local minima in the coordination fields. These spurious min-
ima can trap an agent in unwanted locations.

In general, whenever two fields expressing an attracting part (e.g., the
ROOM fields) and a repelling one (e.g., the CROWD field) are combined by
agents in a coordination field, spurious local minima in the coordination fields
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Fig. 5.20. The coordination field creates a false minimum in room D. This room
was not inserted in the original agent schedule; however, the agent is directed there
by the application

may arise (see Fig. 5.20). This is of course a big problem, because the user is
directed from the application toward a room not inserted in his schedule.

To overcome this problem, the model has to be refined so as to require more
intelligence from the agent’s viewpoint. When an agent arrives at a minimum
of its perceived field, it has to discover whether it is at a real minimum (a
room inserted in its schedule) or a false minimum (a minimum created by
the combination with the crowd field). To this end, an agent can exploit the
fact that, besides typically acting on the basis of the coordination field, it
is still preserving the capability of perceiving individual fields. Accordingly,
to recognize a false minimum, an agent can remove the crowd field from the
combination and reevaluate the coordination field. If it is again at a minimum
then the minimum is a real one, otherwise it is a false one. Of course problems
arise if it is a false one.

Basically, an agent at a false minimum has to decide whether to queue, to
visit something else on its schedule, or, if there are alternative paths leading
to its target, to follow an alternative path toward its original destination.
The decision to queue or to try something different is simply a matter of
preference of the user, who can simply look at the crowd and decide what to
do. The details of this decision process are not analyzed. Instead, we enter
into details about the specific algorithms that an agent can follow to escape
to the false minimum attraction basin or to determine alternative paths to
reach the original destination, since these are more strictly related to the field
approach.

Before doing that, we want emphasize that the capability of agents to
somewhat understand what determines the shape of a coordination field, and
to take alternative actions to blindly following the attracting force of a co-
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ordination field, clearly distinguish Co-Fields from other (even field-based)
approaches to adaptive self-organization. In general, most approaches to self-
organization assume that agents are very simple components devoted to re-
acting to specific environmental stimuli (e.g., fields or pheromones), without
requiring any cognitive ability [107]. In Co-Fields, agents can indeed rely on
such simple reactive behaviors to self-organize their activities. However, an
agent can also try to understand what and why it is being invited to react
in some ways, and it can exploit its cognitive abilities to autonomously de-
cide how to act. In other words, Co-Fields leverage reactive self-organization
toward more sophisticated forms of cognitive or semantic self-organization,
which in our opinion will play an important role in the future.

Escape from an attraction basin

The situation of an agent trapped at a false minimum can be visualized from
Fig. 5.20. A first strategy the agent could adopt to escape from this false
minimum is to remove temporarily from its combination those fields that
attract it toward the crowded direction (left, in Fig. 5.20). This would allow
the agent to visit the room in a different order: visiting first the rooms not
crowded (see Fig. 5.21). This is accomplished by finding all the fields in the
agent’s original combination that push it toward the blocked direction, and
removing them iteratively (starting from the closest) and checking every time
if the agent is still at a false minimum.
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Fig. 5.21. The agent can escape a false minimum, by temporarily removing from
its combination those fields that push it toward the blocked direction (i.e., remove
ROOM C that brings it to the left)
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Following an alternative path

When it is not possible to escape from the false minimum using the previous
approach because all the rooms in the schedule are past the blocked direction,
it may be possible to follow an alternative path toward the agent’s original
destination. The most interesting part of this process is how to determine if
there are alternative paths, exploiting only local information. In the Co-Fields
approach it is easy to prove the following alternative path theorem.

Let us consider the map in Fig. 5.22. Starting from the top-left room of
the map and proceeding clockwise, we will name the rooms A, B, C, D, E, F,
G and H.

If an agent is in a room C and it wants to go toward a room A in direction
i, and if there is a field ROOMG (ROOMG �= ROOMA) so that ROOMG
decreases toward i and decreases also toward another direction j (j �= i), then
there exists a path toward A alternative to the one indicated only by the
ROOMA field.

To follow this alternative path the agent can change its coordination field
to follow ROOMG; once the minimum of ROOMG has been reached, the
agent can switch back to ROOMA to go toward its original destination (see
Fig. 5.22).

This can be also visualized by reverting the representation to just one
dimension, as already done in the previous section. In such a representation,
the agent trapped in room C is shown in Fig. 5.23(top). The agent proceeding
to the alternative path is depicted in Fig. 5.23(bottom).

Alternative Path Theorem

In order to state the alternative path theorem and to prove its correctness, it
is useful to introduce a formalism to abstract a building plan into an undi-
rected graph, and to formalize the fields concept as abstract functions on this
graph.

Definition. A building can be defined as an undirected graph M=
(R,C), where R (Rooms) is the set of the graph’s nodes and C (Connections)
is the set of arcs between the building’s rooms. By definition, C ⊂ R × R.
∀c ∈ C we can indicate c = (r1, r2), with r1, r2 ∈ R, to say that c connects
room r1 with room r2. Because the graph is undirected the connection (r1, r2)
is equal to (r2, r1) and one implies the existence of the other.

Definition. A path through the building M = (R,C) can be defined as
an ordered list of connections: path = (c1, c2, ..., cn) where ∀i = 1, 2, ..., n,
ci ∈ C and if ci = (ai, bi) and ci+1 = (ai+1, bi+1) then bi = ai+1. In par-
ticular given c1 = (a1, b1), a1 will be the path starting point, while given
cn = (an, bn), bn will be the path destination.
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Fig. 5.22. (a) An agent willing to visit room A, gets trapped in room C due to a
local minimum of the coordination field; (b) the agent can analyze the components
of its coordination field, discover the presence of the local minimum, and decide
to proceed, ignoring the CROWD field, toward A; (c) Alternatively, the agent can
evaluate the existence of alternative paths by looking for ROOM fields decreasing
both toward A and in another direction (e.g., the field of ROOM G). If such a field
exists, the agent can follow the field of G and, once the minimum of ROOM G has
been reached, it can switch back to the original coordination field

Definition. Given a building M = (R,C), and two rooms ri, rj ∈ R, we
will indicate with path(ri, rj) the set of all the paths having ri as starting point
and rj as destination. A building will be totally connected if ∀ri, rj ∈ R,
path(ri, rj) �= ∅

Definition. The hop distance between two rooms in M = (R,C) is
defined by the following function

dhop : R × R → N

dhop(ri, rj) =
{

+∞ if path(ri, rj) = ∅
min{card(pi) : p(i) ∈ path(ri, rj)} if path(ri, rj) �= ∅
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Fig. 5.23. (top) An agent trapped in a false minima. (bottom) The agent applies
the alternative path theorem

Definition. Given a building M = (R,C), a field is defined as a function
f : R → N , with f(ri) the field value in room ri

Definition. Given a building M = (R,C), a room field fr̄, r̄ ∈ R is de-
fined as a field so that ∀ri, rj ∈ R, dhop(r̄, ri) < dhop(r̄, rj) ⇔ fr̄(ri) < fr̄(rj).
That is to say that fr̄ is a monotonic increasing field, with respect to hop
distance, and has its minimum in r̄.

Alternative Path Theorem

Hypothesis.
Given a totally connected building M = (R,C). Suppose that every room

in the building generates its corresponding room field: ∀r̄ ∈ R,∃fr̄ roomfield.
Let r̂ a room with more than one connection, i.e., ∃cx, cy ∈ C : cx =
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(r̂, x), cy = (r̂, y);x, y ∈ R, x �= y. Let r̃ be a room so that: fr̃(x) < fr̃(r̂)
and fr̃(y) < fr̃(r̂). That is to say that the room field r̃, in r̂, decreases toward
both x and y (see Fig. 5.24(left)).

Thesis.
There exist at least two distinct paths connecting r̂ and r̃. That is to say

∃p1, p2 ∈ path(r̂, r̃) : p1 �= p2.

Proof.
Let us consider cx = (r̂, x), and cy = (r̂, y), cx, cy ∈ C, cx �= cy because

x �= y.
Now it is easy to prove that ∃px ∈ path(x, r̃) so that r̂ /∈ path(x, r̃) and

∀(ai, bi) ∈ path(x, r̃), fr̃(bi) < fr̃(ai).
In fact because M is totally connected there exists a path between x and

r̃. Let us indicate this path with (c1, c2, ..., ck) (see Fig. 5.24(right)).
Of course we can assume that this path does not contain closed loops,

otherwise we could cut the path short by bypassing the loops.
Now (ck, ..., c2, c1) is a path that goes from r̃ to x. By definition of dhop

we have: ∀ci, ci+1 ∈ (ck, ..., c1), ci = (ai, bi), ci+1 = (ai+1, bi+1) fr̃(bi) =
fr̃(ai+1) < fr̃(ai), because card(ck, ..., ci+1) = card(ck, ..., ci) + 1.

So ∀(ai, bi) ∈ (c1, c2, ..., ck) fr̃(bi) < fr̃(ai). Moreover because fr̃(x) <
fr̃(r̂), r̂ /∈ (c1, c2, ..., ck).

So px = (c1, c2, ..., ck).
Now for the same reasons ∃py ∈ path(y, r̃) so that r̂ /∈ path(y, r̃) and that

∀(ai, bi) ∈ path(y, r̃) fr̃(bi) < fr̃(ai).
Finally cx ∪ px and cy ∪ py are two paths that satisfy the thesis.
q.e.d.

r̂

r~

X

Y
Px

Cy

Cx r̂

r~

X

Y
c1 ,..., ck

ck ,..., c1

Fig. 5.24. The alternative path theorem
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5.5 Scalability Issues

An important issue to be analyzed in field-based coordination and, thus, in
Co-Fields, relates to scalability. By disregarding scalability issues related to
storage management (after all, fields are simple data structures that occupy
very little memory), an infrastructure supporting Co-Fields must be able to
timely propagate the fields spread by the agents and to promptly update
their values according to the agents’ movements and network dynamics. In
this regard, some key questions arise: how much bandwidth is required to
handle field propagation? How much time does it takes to update the fields’
landscape in response to dynamic changes? How much does this cost in terms
of communication bandwidth and computational resources?

In the following chapters we will analyze the above issues with regard to
specific implementations of the Co-Fields approach. Here, we can only sketch
some general analysis (on the lines of [84]), hinting at the feasibility of the
Co-Fields approach.

To ground the discussion, let us focus on the person presence fields of the
case study. These fields are the worst ones to be considered, since they have
to be updated according to people’s movements. Let n be the average number
of neighbors of a network node (because the network topology must resemble
the building one, we assume n ∼ 4 corridors for a room). Let p be the number
of people roaming the building. Let t be the transmission rate for each node
measured in field messages per second. Because the MAC protocol of most
network links avoids collisions between packets, by avoiding neighboring nodes
to talk simultaneously, each node has an actual transmission rate of t/n or
equivalently, it takes a node n/t seconds to propagate a field. Now, a person
moving at speed v, provided with a localization mechanism with a resolution
of d, will repropagate its person presence field v/d times per second. Thus, to
assure that all the field messages are timely managed the following equation
must hold in the network: t/n > p(v/d). This means that, assuming that
a field message is four bytes (three for the person id, and one for the hop
value), each network node will sustain an average traffic of 4np(v/d). Under
foreseeable circumstances (n = 4, p = 100, v = 1, d = 1), this translates to a
bandwidth requirement of 12.8 Kbit/s. So under these conditions, scalability
and communication bandwidth do not appear to be of any concern.

Analogously, it is rather easy to see that pn/t is the time needed for a
node to let the fields forward by one hop. So, for a building with a network
diameter of m, the time to have the fields updated is mpn/t. Under foresee-
able circumstances (t=1 Mbit/s, p=100, n=4, m=50, message=4 bytes), this
results in 0.64 s. Of course, this is not a problem, especially considering the
average speed at which people can proceed in a building! These simple calcu-
lations, surely overlook lots of important aspects (e.g., latency), but still the
results represent good hints about the feasibility of the model.

More on this topic will be in any case discussed in the next chapters.
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Implementing Field-based Coordination
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Commercial Off-The-Shelf Implementations

Co-Fields coordination can potentially be implemented, by means of specific
overlay services, on any middleware infrastructure providing basic support
for data storage, communication, and localization. In fact, what is required
from the middleware infrastructure to implement Co-Fields is a simple stor-
age mechanism (to store field values), a basic communication mechanism (to
propagate fields and to make agents aware of the value of fields and of the
changes in field values), and some kind of network localization mechanism (to
properly support the propagation of fields on a network, and to provide agents
with the correct fields’ magnitude at their current location). In addition, some
kind of mobile code service may be required to dynamically configure field
propagation algorithms and coordination field composition rules [40].

The aim of this short chapter is to present an overview of how Co-Fields
– and field-based coordination in general – can be realized on top of Com-
mercial Off-The-Shelf (COTS) middleware infrastructures. In particular, we
will present how to realize Co-Fields by means of (i) infrastructures based
on direct coordination models, (ii) on shared data space models, and (iii) on
event-based models.

From a very basic perspective, implementing Co-Fields as an overlay ser-
vice over existing middleware infrastructures amounts to creating a software
substrate providing agents with the following two methods: inject(Field f) and
read(Field template). The former allows an agent to inject and spread a field
across the environment (of course, some linguistic mechanisms must also be
available to define fields and their propagation rules). The latter allows an
agent to read the values of a field in a neighborhood so as to be able to com-
pute the coordination field, its gradient, and to decide about further actions
(see Fig. 6.1).

In the following, by exploiting again the museum case study to ground
the discussion, we analyze how the existing models and infrastructures can be
made supporting the above inject and read methods.

Before going on, it is important to remark that although we intend to
show that infrastructures based on existing models can somehow support
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Field Interface

Agent

inject(Field f) read(Field template)

Rest of the NetworkInfrastructure Enabling Interaction
(e.g Direct Communication Infrastructure)

Fig. 6.1. The structure of an abstract Co-Fields implementation

field-based coordination, this does not contradict the claims about the inade-
quacy of these models made in Chap. 3. All these models (direct coordination,
shared data spaces, and event-based ones), being general-purpose, provide ba-
sic mechanisms that can be exploited to enforce any type of coordination in a
distributed system. In fact, they can be employed to build any overlay coor-
dination models above them. But this is not the point. The point is that the
provided mechanisms per se are inadequate in easily supporting uncoupled
context-aware coordination activities. Thus, the need for adaptive context-
aware mechanisms can hardly be easily satisfied by these models – calling for
notable design and implementation efforts. For this reason, the provisioning of
overlay field-based coordination services does not overcome the problem but
simply shifts it to a different level.

By building additional “overlay” field-based coordination services on top of
existing middleware, the application level can take effective advantage of the
simplicity and suitability of the model for dynamic context-aware applications.
However, the mismatch between the underlying basic model and the field-
based abstractions offered at the application level leads to complex and tricky
solutions for implementing field-based services. This problem, analyzed in
the following, motivates the implementation of a special-purpose middleware,
explicitly conceived to handle field-based coordination, that will be described
in the next chapter.

6.1 Co-Fields with Direct Coordination

The main difficulty in realizing Co-Fields on top of an infrastructure support-
ing a direct coordination model is about the fact that Co-Fields promote a
completely uncoupled approach, while direct coordination models, by defini-
tion, tend to enforce strict coupling between interacting components.

To bridge this gap, we can envision two possible solutions:

• We can think that agents communicate directly eventually relying on a
proper discovery facility to exchange information about fields’ values.
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• We can envision the presence of middle agents [111, 157] located within the
building and providing a field-based service. Middle agents can uncouple
agents’ interaction by storing fields, contributing in propagating them, and
later providing fields’ values to application agents.

Although the role of middle agents has been well recognized within direct
coordination models, we focus on the former solution for two main reasons:
on the one hand, the former approach best embodies the principles underly-
ing direct coordination models and infrastructures. On the other hand, when
middle agents are introduced, direct coordination models become very similar
to shared data space and event-based models, in that the role of the mid-
dle agent can be assimilated to that of a data space that is also capable of
handling events (see the rest of this chapter).

Focusing on the case study, the “direct coordination” implementation can
be rooted on few key assumptions.

1. Users carry wireless mobile devices, running an agent that is able to ac-
cess and spread fields (see below) by properly accessing the middleware
services.

2. The museum provides also a “direct coordination” middleware infrastruc-
ture that enables unconstrained (i.e., long range) communications between
all the agents within the building. Moreover, a globally accessible nam-
ing and discovery service is available to resolve names and find suitable
interaction partners.

3. The museum provides a globally accessible location service that is able to
localize agents within the building and has access to the building map.
In particular, this service should easily provide a measure expressing the
distance (in terms of either length of walking path or room distance)
between the inquiring and the inquired agents.

4. Sorts of system level “Room Agents” are associated with each museum
room. These agents are of limited activity, being mainly devoted to in-
jecting the corresponding room fields (see below).

To actually propagate and read fields, agents have to implement the in-
ject and read methods sketched above. In particular a possible (among many
others) implementation of these methods is reported below.

1. When an agent X injects a field it basically registers a new entry in the
globally accessible naming and discovery service of the museum. A field
identifier, or better a general description of the field F, is associated with
the field together with the reference (e.g., the network address) of the
agent that has injected it X (see Fig. 6.2a).

2. When an agent Y tries to read a field, it basically looks up its description
F in the naming and discovery service, to retrieve a reference to the agent
X that injected it. Then, it can communicate directly with that agent
X. Specifically agent Y asks agent (X) for the value of the field F at its
location. The query consists of the couple Y, F (see Fig. 6.2b).
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Fig. 6.2. Implementing Co-Fields on top of a direct coordination infrastructure.

3. Upon receiving the query, agent X queries the museum location service to
infer the location of agent Y and the distance between them.

4. On the basis of the building floor plan and of the computed locations and
distance, the agent X replies to Y by sending the value of field F at the
Y’s location and the value of field F in Y’s one-hop neighborhood. Such
values are organized in a properly accessible data structure (see Fig. 6.2c).

5. Eventually, agent Y receives the data structure. Then, it can compute the
application-specific coordination field and decide about further actions.
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6. The above communication protocol must be repeated whenever the field
distribution changes or the inquiring agent (Y) moves.

From this implementation it is rather easy to see that direct coordination
models and infrastructures are not really suitable in implementing field-based
abstractions and in supporting field-based coordination. The naturally un-
coupled communication enforced by fields can be recreated upon a direct
coordination model only by roughly mimicking it by rather complex naming
and discovery protocols.

Moreover, a more natural (i.e., straightforward) field implementation
would require an external distributed repository for storing field values and
for codifying field propagation in a distributed way, i.e., by means of a hop-
by-hop propagation algorithm as described in the previous chapter. If such a
distributed infrastructure is not available, as in the case of middleware infras-
tructures relying on a single (or on a limited number of) naming and discovery
service, implementing field propagation becomes very tricky and requires an
artificial evaluation of the value of a field, by estimating location and distances
as described above.

6.2 Co-Fields with Shared Data Spaces

Most middleware infrastructures relying on a shared data space coordination
model implement data spaces in terms of tuple spaces [43], as described in
Chap. 3. The overall architecture of the middleware can then adopt one of
these two solutions:

1. Conceptually centralized. The mainstream deployment of shared tuple
space models consists in a single conceptually centralized (but possibly
implemented as physically distributed) globally accessible tuple space or,
in some cases, in a limited number of independent but yet globally ac-
cessible tuple spaces (as, e.g., in JavaSpaces [39] and TSpaces [39, 83]).
Agents can globally access this tuple spaces from everywhere to publish
and retrieve data.

2. Conceptually distributed. Several other recent proposals (e.g., MARS [22],
LIME [112], and TUCSON [121]) focus on conceptually distributed tuple
spaces. These models assume that the environment is enriched by a num-
ber of independent tuple spaces, typically accessible only from a locality.
Agents can disseminate information on tuple spaces in their surroundings,
to be possibly collected and exchanged afterward.

Although the first approach is closer to the general idea of shared data
space, in this section we focus on the latter. In fact, a set of distributed tuple
spaces is a very suitable environment in which to realize the field idea. Tuple
spaces can naturally contain the local instances of fields and multiple agents
can propagate and access fields there, in a completely uncoupled way.
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Fig. 6.3. Implementing Co-Fields on top of a middleware infrastructure based on
multiple independent tuple spaces

To ground the discussion, we present an implementation of Co-Fields upon
a fixed network infrastructure exploiting the services of the MARS coordina-
tion infrastructure based on programmable tuple spaces [22]. MARS adds
to the classic tuple space model [43] the possibility of programming reactive
behaviors triggered by tuple operations. In other words, MARS can be pro-
grammed so that when a specific tuple is inserted the infrastructure performs
some operations. The described implementation relates to early experiments
actually conducted within our research group to test the Co-Fields approach.

Focusing again on the case study scenario, MARS tuple spaces have been
allocated on IP nodes acting as wireless access points deployed across the mu-
seum building. Users, carrying wireless mobile devices, connect to the MARS
tuple spaces in their range. Each tuple space contains a standard tuple with
the physical coordinates of the tuple space itself. A user agent running on
the mobile device of a tourist periodically queries all tuple spaces in its range
for those tuple coordinates, and then maintains a reference only to that tuple
space whose coordinates are closest to the ones of the tourist – as provided
by the localization mechanism (see below).
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MARS tuple spaces are networked with each other, in a topology resem-
bling the museum floor plan, and can access neighbor MARS servers with
standard tuple space operations (e.g., a MARS server can insert a tuple in
one of its neighbor MARS servers). Different topologies mapping different
floor plans can be realized simply by providing each host with only the IP
addresses of its virtual neighbors in the intended topology, and having the
resulting network being used by the MARS servers to communicate.

Each MARS tuple space has been programmed to react to a new tuple
being inserted in it by recursively inserting a modified version of the tuple in
neighbor tuple spaces, carefully avoiding loops or backward propagation. This
mechanism enables the MARS infrastructure to propagate hop-by-hop a tuple
across the building. For example, each MARS server could be programmed
to react to the income of a tuple like (TYPE=“RoomField”, NAME=any,
VAL=any) by inserting in neighbor spaces (avoiding loops and backward prop-
agation) the same tuple with the VAL field increased by one. The result is a
field-like distributed data structure (implemented by means of tuples) spread
across the building and having its VAL entry reflecting the hop distance from
the source (see Fig. 6.3a).

Moreover, each MARS tuple space has been programmed to periodi-
cally read tuples being stored in its neighbor spaces and to store those tu-
ples locally, adding to the tuple an entry specifying the coordinates of the
server from which the tuple has been taken. This is to facilitate agents
in computing the gradient of a field. In fact, each agent, by querying the
MARS server to which is connected, can determine how a specific tuple
(representing a field) changes in the neighborhood. For example, by read-
ing the tuples (TYPE=“RoomField”, NAME=“Room1”, VALUE=3) and
(TYPE=“RoomField”, NAME=“Room1”, VALUE=2, FROM=“Room4”),
the agent can know that the room field associated with Room 1 is decreasing
toward Room 4, and moves toward that location to reach the room (see Fig.
6.3b).

For the sake of testing, a simple localization mechanism based on RFID
tags has been set up to locate agents (i.e., PDAs enriched with RFID tag
readers access RFID tags, storing coordinate information, are spread in the
building) [93].

From this description, it should be clear that an infrastructure based on
conceptually distributed data spaces (i.e., a set of disjoint tuple spaces), is
a particularly fertile ground on which to build the field abstraction. Still,
the pull-based (proactive) mechanism promoted by tuple-based coordination
models [43], even when coupled with reactive programmability of tuple spaces
as in MARS [22], somewhat clashes with the reactive inspiration at the heart of
the field-based coordination approach. In particular, a further set of features
supporting push-based (reactive) mechanisms (such as in publish-subscribe
systems) should be introduced, also to enable the field-based implementation
to properly perceive and react to environmental dynamics.
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6.3 Co-Fields with Event-Based Infrastructure

Middleware infrastructure supporting event-based (publish/subscribe) inter-
action models can be realized and deployed in a number of different ways
[35]. The choice of a specific solution may notably affect the way in which the
Co-Fields model can be implemented on top of an event-based infrastructure.
In this section, we assume that the museum is provided with a conceptually
centralized – but possibly physically distributed – event dispatcher system
[23, 26]. The event dispatcher system is in charge of collecting subscriptions
from all agents in the system, and of dispatching events to all agents that have
subscribed to them. Agents have to connect to the event dispatcher both to
register subscriptions and to publish events.

The implementation of the Co-Fields model on top of such an infrastruc-
ture relies on two main points: on the one hand, the event dispatcher decouples
agent interactions; on the other hand, a special system-level Field Propagator
agent is introduced with the duty of propagating fields across the museum
floor plan. Let us present these concepts in more details.

1. The museum provides a globally accessible event dispatcher and a glob-
ally accessible location service that is able to localize agents within the
building.

2. A special Field Propagator agent run by the museum infrastructure sub-
scribes to all the field-related events. This agent has access to the museum
floor plan and propagates the field values accordingly (see below).

3. Agents (either associated with the museum rooms or those running on the
users’ handheld devices) connect the event dispatcher to inject a field by
properly generating a specific field-event, or to subscribe to a specific field
(see below).

To propagate and read fields, agents have to implement the inject and read
methods. In particular,

1. When an agent (X) injects a field, it publishes the corresponding event to
the dispatcher. In particular, we assume that the event is characterized by
a tuple (EVENT=“Inject”, ID=“Field Id”, PROP-RULE=“Propagation
Rule”, LOC=“Location”). EVENT codifies the kind of happening. ID
uniquely identifies the field. PROP-RULE expresses how the field should
be propagated (i.e., deployed) across the building map. The propagation
rule can be codified either by a scripting language or by making use of mo-
bile code techniques. Finally, LOC expresses where the source of the field
is located. If an agent moves after having propagated a field, it republishes
the event with updated location information (see Fig. 6.4a).

2. The Field Propagator agent is in charge of deploying a field across the
building. It subscribes to all the events in the form (EVENT=“Inject”,
ID=any, PROP-RULE=any, LOC=any). Once such an event is registered,
the Field Propagator agent computes how the field should be deployed
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across the building by applying repeatedly the propagation rule. Then it
fires field deployment events to the event dispatcher. These events are in
the form (ID=“Field Id”, VALUE=“Field value”, LOC=“Location”). For
each field being injected, the Field Propagator agent creates a number
of field deployment events equal to the number of relevant places in the
building (e.g., one event for each building room and corridor). Each of
these events represents the magnitude of the specific field in a specific
location in the building (see Fig. 6.4b).

3. Users agents subscribe to the fields that are relevant for their coordination
task, specifying their and neighbors’ locations in the subscriptions. The
event dispatcher notifies them about fields in their surroundings (see Fig.
6.4c).

4. On the basis of the information received, users eventually compute their
coordination field and decide for further actions. Upon a movement, users
subscriptions have to updated to take into account the new location.

From this implementation it is rather clear that, although an event-based
model strongly supports the decoupling between agents’ interactions and eas-
ily promotes reactive behaviors, the conceptually centralized nature of the
event dispatcher (even when implemented in a distributed way) clashes with
the distributed nature of fields. Such mismatch forces spurious entities like
the Field Propagator agent to be introduced.

To conclude, we do not reject the possibility that better implementations
than the one we have proposed may be conceived using existing middleware
infrastructures. Nor do we reject the fact that specific middleware systems
recently proposed, by integrating additional features, can be more suited to
support field-based coordination. In any case, it should be rather clear that
the best solution to implement and support the Co-Field approach is to define
a field-specific middleware infrastructure, properly combining the character-
istics of event-based coordination models and of shared data spaces models.
This is the rationale at the basis of the definition and implementation of the
TOTA middleware infrastructure, presented in the next chapter.
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Tuples On The Air (TOTA)

The choice of implementing the Co-Fields model as an additional layer over
an existing middleware infrastructure, although providing for generality and
portability, is not the most suitable solution. As illustrated in the previous
chapter, the abstraction mismatches between the two layers can introduce
computational and communication inefficiency. Therefore, we decided to in-
vestigate the possibility of designing and implementing a new middleware
infrastructure, specifically conceived to properly support field-based coordi-
nation and Co-Fields.

The result of this research is in a middleware, somewhat inspired from our
previous research work on tuple-based coordination, that we named TOTA
[90, 91]. The acronym TOTA, short for “Tuples On The Air,” reflects the fact
that fields are implemented in terms of tuples that are capable of propagating
in a network as if they were electromagnetic fields propagating in the air. This
makes TOTA notably different from traditional shared tuple-based models, in
that TOTA tuples are not necessarily associated with a specific node (or with
a specific data space), but can propagate in a network according to a variety
of propagation patterns, to form a sort of spatially distributed data structure
able to express fields, messages to be transmitted/exchanged between agents,
or contextual information on the distributed environment.

From the agents’ point of view, executing and interacting with the support
of TOTA basically reduces to exploiting a simple API to define and inject
tuples in the system, perceiving local tuples, and acting accordingly to some
application-specific policy. In particular, accessing TOTA tuples can rely on
both a proactive scheme, in which agents access the local tuples as if they
were accessing a standard tuple space, and on a reactive scheme, in which
agents can be notified of locally occurring events such as changes in the locally
available tuples and in the structure of the network neighborhood. In this
regard, we emphasize that TOTA is not only a special-purpose infrastructure
to support field-based coordination. It can also be used as a general-purpose
middleware. For instance, by exploiting degenerated tuples that are unable to
propagate, TOTA can support standard tuple-based coordination relying on a
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multiplicity of independent local tuple spaces; by exploiting ephemeral tuples
that propagate but do not form a persistent distributed data structure, TOTA
can be made to mimick most current event-based middleware infrastructure.

7.1 Overview

From an architectural viewpoint, TOTA is built on a peer-to-peer network
of possibly mobile nodes, each running a local version of the TOTA middle-
ware. Each TOTA node holds references to a limited set of neighboring nodes,
and it is assumed that communication is limited within this neighborhood.
The structure of the network, as determined by the neighborhood relations,
is automatically maintained and updated by the nodes to support dynamic
changes, whether due to the nodes’ mobility or to their insertions or failures.
To this end, we assume the system-level capability for nodes to detect events
related to changes in the network structure.

The specific nature of the network scenario determines how each TOTA
node determines its neighborhood.

In a network scenario without long-range routing protocols being provided,
it is rather easy to identify the node’s neighborhood with the network’s local
topology. For example, in a bare MANET scenario, the neighborhood could
coincide with the range of the wireless link (e.g., all the nodes within 10 m, for
a Bluetooth wireless link). In this case, TOTA nodes will be directly connected
to the local network interface to detect nodes in their range either by some
periodic broadcasting schema or by catching connection and disconnection
events.

In a network scenario with established long-range routing protocols (e.g.,
the Internet), the definition of the node’s neighborhood is less trivial. We can
imagine however that in such cases the concept of neighborhood can become
an abstraction, not related to the real reachability of a node (e.g., on the
Internet IP routing masks network topology), but rather to a more general
concept of addressability (e.g., a node can communicate directly with another
only if it knows the other node’s IP addresses). In this case, a TOTA node
can either download from a well-known server the list addresses representing
its neighbors. Or it can start an expanding ring search to detect nodes [46,
120, 119] in its proximity.

7.1.1 Distributed Tuples and Fields

Upon the distributed space identified by the dynamic network of TOTA nodes,
each agent is capable of locally storing tuples and letting them diffuse through
the network. Tuples are injected in the system from a particular node, and
spread hop-by-hop accordingly to their propagation rule. In fact, a TOTA
tuple is defined in terms of a “content,” and a “propagation rule”:
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T=(C,P)

The content C is an ordered set of typed fields representing the information
carried by the tuple. Note that this is intended to support a form of informed
(or semantic) field-based coordination, as already discussed in Chap. 5 with
regard to Co-Fields, in that the content of a TOTA tuple is not constrained
to express only a field strength value, but can contain arbitrary information.

The propagation rule P determines how the tuple should be distributed
and propagated across the network. This includes determining the “scope”
of the tuple (i.e., the distance at which the tuple should be propagated and
possibly the spatial direction of propagation) and how the propagation can
be affected by the presence or the absence of other tuples in the system. In
addition, the propagation rule can determine how the tuple’s content should
change while it is propagated. Tuples are not necessarily distributed replicas:
by assuming different values in different nodes, tuples can be effectively used
to build a distributed overlay data structure expressing some kind of con-
textual and spatial information. So, unlike in traditional event based models,
propagation of tuples is not driven by a publish-subscribe schema, but it is
directly encoded in the tuples’ propagation rule and, unlike an event, a TOTA
tuple can change its content during propagation.

The spatial structures induced by tuples’ propagation must remain coher-
ent despite network dynamism. To this end, the TOTA middleware supports
tuples’ propagation actively and adaptively: by constantly monitoring the net-
work local topology and the income of new tuples, the middleware lets the
tuples repropagate automatically, as soon as appropriate conditions occur. For
instance, when new nodes get in touch with a network, TOTA automatically
checks the propagation rules of the already stored tuples and eventually prop-
agates the tuples to the new nodes. Similarly, when the topology changes due
to nodes’ movements, the distributed tuple structure automatically changes
to reflect the new topology.

To support tuples’ propagation and maintenance TOTA needs a means to
uniquely identify tuples in the system in order, for example, to know whether
a particular tuple has been already propagated in a node or not. A tuple’s
content cannot be used for this purpose, because the content is likely to change
during the propagation process. To this end, each tuple will be marked with
an id (invisible at the application level) that will be used by TOTA during
the tuples’ propagation and maintenance to keep track of the tuple. A tuple’s
id is generated by combining a unique number relative to each node (e.g., the
MAC address, or a very high random number casted at bootstrap) together
with a progressive counter for all the tuples injected by the node. Moreover,
as we will see later, the tuple id allows a fast (hash-based) accessing schema
to the tuples.

Given these features, it is clear that TOTA distributed tuples are a perfect
tool to implement the concept of fields, to enrich fields with arbitrary semantic
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information (by setting the tuples’ contents properly), and more in general to
distribute any type of contextual information in a dynamic network scenario.

7.1.2 The Case Study in TOTA

Let us consider again the museum case study. We recall that we assume that
the museum is properly instrumented with a reasonably dense number of
wireless devices associated, e.g., with museum rooms and corridors as well as
with art pieces, and that tourists are provided with wireless-enabled PDAs.
We suppose here, that all these devices are TOTA nodes, i.e., are running a
local version of TOTA, and connect with each other in an ad hoc network, to
define the structure of the TOTA networks. Moreover, we make the following
assumptions (most of them had been already specified with regard to Co-
Fields):

1. The topology of the ad-hoc network formed by TOTA nodes mimics the
museum’s topology (i.e., floor-plan). This means in particular that we
assume that there are no network links between physical barriers (like
walls). To achieve this property, we can assume either that the devices
are able to detect and drop those network links crossing physical barriers
(e.g., relying on signal strength attenuation or some other sensor installed
on the device) [131, 5] or that the museum building is preinstalled with
a network backbone – reflecting its floor plan topology – to which other
nodes connect [95].

2. All the TOTA devices are connected only to nearby ones: there are no
long-range, wired backbones in the network.

These assumptions tend to have the network reflect the map of the physical
space in the building. Thus a tuple propagated in the TOTA network will
assume a configuration (i.e., a shape) coherent with the building plan.

As an additional hypothesis, we assume that

3. Devices are provided with a localization device [50] enabling them to know
where other neighbor devices are located. Further details about this topic
are in the next subsection.

To start understanding how TOTA actually works, we concentrate on two
specific representative problems: (i) how tourists can gather and exploit in-
formation related to an art piece they want to see; and (ii) how they can be
supported in planning and coordinating their movements with other, possible
unknown, tourists (e.g., to avoid crowd or queues, or to meet together at a
suitable location).

The first problem we face is that of enabling a tourist to discover the
presence and the location of a specific art piece.

TOTA makes this very simple, and let us envision two possible solutions.
As a first solution, each art piece in the museum can propagate a tuple having
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as a content C its description, its location, and a value specifying the hop
distance of the tuple from its source (i.e., of the art piece itself; see Fig.
7.1,“Art Piece Tuple”).

Then, any tourist, by simply checking his local TOTA tuple space, can
discover where the art piece is located. Then, by following the tuple backward
(i.e., following downhill the gradient of the “distance” field), the tourist can
easily reach the tuple’s source without having to rely on any a priori global
information about the museum plan.

As an alternative solution, we could consider that art pieces do not prop-
agate any tuple a priori, but they can sense the income of tuples propagated
by tourists – describing the art piece they are looking for. Art pieces are pro-
grammed to react to these events by propagating backward to the requesting
tourists a tuple containing their description and their own location informa-
tion. In particular, such query and answer tuples could be defined as depicted
in Fig. 7.1, “Query Tuple” and “Answer Tuple.” It is worth noting that, since
TOTA keeps the tuple shape coherent despite node movements, the Query
Tuple creates a gradient leading to its source even if the source moves. Thus
answers can reach a tourist while he is moving (see Fig. 7.2a, b)).

With regard to the motion coordination domain, the “meeting” service
whose aim is to help a group of tourists dynamically find each other and move
toward the most suitable room for a meeting (already discussed in Chap. 5),
can be easily enforced with TOTA. Even if several different policies can be
thought related to how a group of tourists should meet, here we will concen-
trate on having a group of tourists that wants to meet in the room that is
between them (their barycenter or center of gravity). To this purpose each
tourist involved in the meeting can inject the tuple described in Fig. 7.1,
“Meeting Tuple.” Then, any tourist can follow downhill the tuple propagated
by the closest other tourist in the meeting group. In this way all the tourists
“fall” toward each other, and they meet in their barycenter room (see Fig.
7.2c). It is interesting to notice that, as tourists move following downhill the
gradient of the meeting tuple, they perturb the network topology and thus
the tuples’ shape, even the one they are actually following. However, the rip-
ples being created in the tuple’s distributed structure tend to be behind the
agents; thus they do not affect their motion.

7.1.3 Spatial Concepts in TOTA

The type of context-awareness promoted by TOTA, as that of field-based
coordination, is strictly related to spatial awareness. In fact, by creating an
overlaid, distributed data structure, TOTA tuples intrinsically provide a no-
tion of space in the network. For instance, a tuple incrementing a value in its
content as it propagates identifies a sort of “structure of space” defining the
network distances from the source.

This kind of structure of space provides context-spatial awareness to appli-
cation agents. For example, in the above museum application, this information
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Art Piece Tuple

C= (description, location, distance)

P=(propagate to all peers hop by hop, increasing the

‘‘distance’’ field by one at every hop)

Query Tuple

C = (description , distance)

P =(propagate to all peers hop by hop, increasing the

‘‘distance’’ field by one at every hop)

Answer Tuple

C = (description, location, distance)

P = (propagate following downhill the ‘‘distance’’ of the

associated query tuple, incrementing distance value by one

at every hop)

Meeting Tuple

C= (tourist_name, distance)

P=(propagate to all peers hop by hop, increasing the

‘‘distance’’ field by one at every hop)

Fig. 7.1. High-level description of the tuples involved in the museum case study.
Art Piece Tuple is the tuple proactively injected in the network by an art piece
to notify other agents about itself. Query and Answer Tuples are the tuples
respectively used by an agent to look for specific art pieces, and used by art pieces
to reply. Meeting Tuple is the tuple injected in the network by the meeting agents

has been used to route messages between tourists and art pieces, and to guide
tourists’ movements.

TOTA also allows dealing with spatial concepts in a much more flexible
way. Although at the primitive level the space is the network space and dis-
tances are measured in terms of hops between nodes, it is possible to exploit
a much more physically grounded concept of space. This may be required
by several pervasive computing scenarios in which application agents need
to interact with and acquire awareness of the physical space. For instance,
one can bind the propagation of a tuple to a portion of the physical space
by having the propagation procedure – as the tuple propagates from node to
node – check the local spatial coordinates, so as to decide whether to further
propagate the tuple or not.

In order to bound agents’ and tuples’ behavior to the physical space, TOTA
nodes must be provided with some kind of localization mechanism [50]. A
variety of solutions can be conceived for this purpose:

• A GPS-like localization mechanism can provide absolute spatial informa-
tion (e.g., absolute latitude and longitude of a node in the network). An
actual GPS (Global Positioning System) getting spatial coordinates from
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Fig. 7.2. (a) An agent propagates a QUERY field to look for specific information.
(b) A suitable art piece propagates an ANSWER field that propagates downhill
following the QUERY field. (c) Meeting application: for ease of illustration two
agents are directed toward the leftmost agent, that does not move; actually, all
three agents would collapse toward each other

satellites naturally belongs to this category. Beacon-based signal triangu-
lation is another example of this category (nodes get their coordinates in
an absolute coordinate frame defined by the beacons [105]). RFID tags,
distributed in an environment and identifying specific locations or being
loaded with absolute coordinates, can be used by TOTA nodes equipped
with an RFID reader to infer their absolute actual location [93].

• A RADAR-like localization mechanism provides local information (e.g.,
relative distances and orientations between nodes). An actual radar or
sonar device belongs to this category (radio and sound waves reflected by
neighbor devices enable them to infer their distance and orientation). A
videocamera installed on a node can serve the same purpose (processing
the image coming from the camera, a node can infer where other nodes
are). Network roundtrip time and signal strength attenuation may also
serve this purpose.
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The kind of localization mechanism available strongly influences how nodes
can express and use spatial information. GPS-like mechanisms are more suit-
able at defining “absolute” regions. For example, they allow us to easily cre-
ate tuples that propagate across a region defined by means of the coordi-
nates of its corners (e.g., propagate in the square area defined by (0,0) and
(100,100)). RADAR-like mechanisms are more suitable at defining “relative”
regions, where for example tuples are constrained to travel north from the
source or within a specified distance. Further details on these concepts will
follow later.

It is interesting to report that spatial concepts play an important role in a
variety of different proposals in the area of pervasive computing. For instance,
in Spatial Programming [17], a programming language to program and coordi-
nate a vast number of devices dispersed in an environment is proposed. There,
the idea is to identify a number of spatial regions relevant for a given appli-
cation and to access pervasive devices through the mediation of these regions
(e.g., “this message is for all the devices on Main Street”). To this end, the
definition of the regions is performed by adopting GPS devices and by using
distributed data structures similar to TOTA tuples, called Smart Messages
[16] .

Moreover, other than in the physical space, one could think of mapping
the nodes of a TOTA network in any sort of virtual or logical space. In these
cases, TOTA must be supported by an appropriate routing mechanism al-
lowing distant peers to be neighbors in the virtual space. Such virtual spaces
are particularly useful and enable the definition of advanced applications such
as content-based routing, as in CAN [120] and Pastry [129]. As will be de-
scribed in the next chapter, TOTA concretely supports the definition of these
kinds of applications. Also, in this case it is interesting to report that similar
principles are at the core of the Multilayered Multi Agent Situated System
(MMASS) model [6]. In MMASS, agents’ actions take place in a multilayered
environment. Each layer provides agents with some contextual information
supporting agents’ activities. The MMASS environment is thus a hierarchy of
virtual spaces built upon one another, where lower layers provide the routing
infrastructure for upper ones.

7.2 The TOTA Middleware

7.2.1 Architecture of TOTA Nodes

The internal architecture of each TOTA node is constituted by three main
parts (see Fig. 7.3): (i) the TOTA API is the main interface between the
application agents and the middleware. It provides functionalities to let an
application agent inject new tuples in the system, retrieve tuples, and place
subscriptions in the event interface. (ii) The EVENT INTERFACE is the
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component in charge of asynchronously notifying the application about sub-
scribed events, like the income of a new tuple, or about the fact that a new
node has been connected to/disconnected from to the node’s neighborhood.
(iii) The TOTA ENGINE is the core of TOTA: it is in charge of maintain-
ing the TOTA network by storing the references to neighboring nodes and of
managing tuples’ propagation by sending and receiving tuples. In particular,
this component is in charge of sending tuples injected from the application
level, and of applying the propagation rule of received tuples to repropagate
them accordingly. In addition this component monitors network reconfigura-
tion, the income of new tuples, and possibly external events, to update and
repropagate already stored tuples with the aim of maintaining their structural
coherency. Finally, at the core of the TOTA ENGINE, each TOTA middle-
ware is provided with a local tuple space to store the tuples that reached that
node during their propagation.

EVENT INTERFACE

Application

TOTA ENGINE

TOTA API

Operating System
  

Network

LOCAL TUPLES

NEIGHBOR’s
TOTA

MIDDLEWARE

Fig. 7.3. The TOTA middleware architecture

7.2.2 TOTA Implementation

From an implementation point of view, we developed a first prototype of
TOTA running on laptops and on HP IPAQs 36xx equipped with the 802.11b
wireless card, Familiar LINUX [36], and J2ME-CDC (Personal Profile) [61].
IPAQs connect locally in the MANET mode (i.e., without requiring access
points) creating the skeleton of the TOTA network. Tuples are propagated
through multicast sockets to all the nodes in the one-hop neighborhood. The
use of multicast sockets is driven by the need to improve communication speed
by avoiding the 802.11b unicast handshake. By considering the way in which
tuples are propagated, TOTA is very well-suited for this kind of broadcast
communication. We think that this is a very important feature, because it
will allow implementing TOTA in the future on really simple devices (e.g.,
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micromote sensors [114]) that cannot be provided with sophisticate commu-
nication mechanisms. The use of Familiar LINUX is driven by the need to
easily access low-level network information related to connection and discon-
nection events, and the strength of wireless connections, as required for the
implementation of the TOTA event-based engine.

At the time of the writing, our laboratory owned only a dozen IPAQs
and laptops on which to run the system. Since the effective testing of TOTA
would require a larger number of devices, we have implemented an emulator
to analyze TOTA behavior in the presence of hundreds of nodes. The em-
ulator, developed in Java, enables examining TOTA behavior in a MANET
scenario, in which nodes topology can be rearranged dynamically either by a
drag and drop user interface or by simulated autonomous nodes’ movements.
The strength of our emulator is that, by adopting well-defined interfaces be-
tween the emulator and the application layers, the same code “installed” on
the emulated devices can be installed on real devices. This allows us to test
applications first in the emulator, and then to upload them directly to a net-
work of real devices (see Fig. 7.4). Moreover, the implemented emulator also
enables a “mixed” testing mode, in which one or more real IPAQs can be
mapped into nodes of the simulation. In this mode, all the IPAQ commu-
nication is diverted into the simulation, providing the illusion that the real
IPAQs are actually embedded in a large-scale network. This enables us to test
interesting applications in which a user with a PDA can interact both with
real network peers and with simulated ones.

Since our focus is to test TOTA-supported field-based coordination activi-
ties in a wide array of different scenarios (other than in pervasive computing),
a great deal of care has been taken to allow our emulator to seamlessly inte-
grate with other available emulators. For instance, we managed to integrate
our TOTA emulator within a modular robot simulator, within an emulator
for urban traffic control, and within the engine of well-known videogames (see
also the end of Chap. 4) [99, 124, 48, 51, 62, 123].

7.3 TOTA Programming Model

Developing applications upon the TOTA middleware basically implies know-
ing

1. what are the primitive operations provided by the TOTA API to interact
with the middleware;

2. how to specify tuples and their propagation rules;
3. how to exploit the above to code agent coordination.

These topics are going to be analyzed in the rest of this section.
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a)

b)

Fig. 7.4. TOTA emulator. (a) A snap shot of the emulator. The snap shot shows
the 2D representation of the TOTA network. Moreover, the P39 TOTA GUI pops
up when double clicking on the node. (b) The same code running on the emulator
can be uploaded into an IPAQ. Note the same GUI as before
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7.3.1 The TOTA API

TOTA is provided with a simple set of primitive operations to interact with
the middleware (see code in Fig. 7.5).

public void inject (TotaTuple tuple);

public Vector read (Tuple template);

public Vector readOneHop (Tuple template);

public Tuple keyrd (Tuple template);

public Vector keyrdOneHop (Tuple template);

public Vector delete (Tuple template);

public void subscribe (Tuple template, ReactiveComponent comp,

String rct);

public void unsubscribe (Tuple template, ReactiveComponent comp);

Fig. 7.5. The TOTA API

inject is used to inject the tuple passed as an argument in the TOTA net-
work. Once injected, the tuple starts propagating according to its propagation
rule (embedded in the tuple definition). The read primitive accesses the local
TOTA tuple space and returns a collection of the tuples locally present in
the tuple space and matching the template tuple passed as parameter. The
readOneHop primitive returns a collection of the tuples present in the tuple
spaces of the node’s one-hop neighborhood and matching the template tuple.
The keyrd and keyrdOneHop methods are analogous to the former two, but in-
stead of performing a pattern matching on the basis of the tuple content, they
look for tuples with the same middleware-level ID as the tuple passed as argu-
ment. The delete primitive extracts from the local middleware all the tuples
matching the template and returns them to the invoking agent. In addition,
subscribe and unsubscribe primitives are defined to handle events. These prim-
itives rely on the fact that any event occurring in TOTA (including arrivals
of new tuples, connections and disconnections of neighbor TOTA nodes) can
be represented as a tuple. Thus, the subscribe primitive associates the execu-
tion of a reaction method in the agent in response to the occurrence of events
matching the template tuple passed as first parameter. Specifically, when a
matching event happens, the middleware invokes on the agent a special react
method and passes to it, as parameters, the reaction string and the matching
event. The unsubscribe primitive removes all the matching subscriptions.

It is worth noting that, despite the fact that all the TOTA read-like meth-
ods are non-blocking, it is very easy to realize blocking operations using the
event-based interface. An agent willing to perform a blocking read, for exam-
ple, has simply to subscribe to a specific tuple and wait until the corresponding
reaction is triggered to resume its execution.

Moreover, the middleware is provided with two methods whose access is
restricted to tuples only (see code in Fig. 7.6). The store method is invoked
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by a tuple to be stored in the local tuple space, while the move method is
invoked by a tuple to be broadcasted in the local one-hop neighborhood.

To clarify the above concepts let us consider the simple application agent of
Fig. 7.7). That agent performs three simple actions: it injects a “Hello World”
tuple, it looks for another tuple in its tuple space, and finally it subscribes
to a tuple and reacts to the income of that tuple, by simply printing out a
string.

public void store (Tuple t);

public void move(TotaTuple t);

Fig. 7.6. Store and move methods. They are not part of the main API, they are
only used within tuples code

public class ToyAgent implements AgentInterface {

private TotaMiddleware tota;

/* agent body */

public void start() {

/* create a tuple and inject it*/

FooTuple foo = new FooTuple("Hello World!");

tota.inject(foo);

/* define a template tuple */

FooTemplTuple t = new FooTempTuple();

/* read local tuples matching the template */

Vector v = tota.read(t);

/* subscribe to changes in tuples matching t*/

tota.subscribe(t,this,"");

}

/* code of the reaction to the subscrption */

public void react(String reaction, String event){

System.out.pritnln(event);

}

}

Fig. 7.7. Toy Agent. This agent performs three simple actions: it injects a “Hello
World” tuple, it looks for another tuple in its tuple space, and it subscribes to a
tuple and reacts to the income of that tuple by printing out a string

7.3.2 Specifying TOTA Tuples

Other than the TOTA API, a suitable approach is required to specify the
TOTA tuples that are going to be used in an application. Indeed, specify-
ing tuples is possibly the key issue in TOTA to properly and flexibly support
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field-based coordination. TOTA tuples have been designed by means of objects
belonging to specific tuple classes. The object state models the tuple content,
while the tuple’s propagation has been encoded by means of a specific prop-
agate method. Following this schema, an abstract class TotaTuple has been
provided as the base of a general framework for tuple classes specification (see
code in Fig. 7.8).

abstract class TotaTuple {

protected TotaInterface tota;

/* instance variables represent tuple fields */

/* this method inits the tuple, by giving a reference

to the current TOTA middleware */

public void init(TotaInterface tota) {

this.tota = tota;

}

/* this method codes the tuple actual actions */

public abstract void propagate();

/* this method enables the tuple to react

to happening events */

public void react(String reaction, String event)

{

}}

Fig. 7.8. Main structure of the TotaTuple class

In TOTA, a tuple does not own a thread, but it is actually executed by the
middleware (i.e., the TOTA ENGINE) that runs the tuple’s init and propa-
gate methods. Tuples, however, must remain active even after the middleware
has run their code. This is fundamental because their self-maintenance algo-
rithm – see later in Subsect. 7.4 – must be executed whenever the correct
condition appears (e.g., when a new peer connects to the network, the tuples
must propagate to this newly arrived peer). To this end, tuples can place sub-
scriptions to the TOTA EVENT INTERFACE, as provided by the standard
TOTA API. These subscriptions let the tuples remain “alive,” enabling them
to re-execute their propagation method upon triggering conditions.

A programmer can create new tuples by subclassing the TotaTuple class.
However, to facilitate this task, we developed and made available a complete
class hierarchy for tuples (see Fig. 7.9) from which the programmer can simply
inherit to create custom, application-specific tuples. Classes in this hierarchy
already take care of implementing propagation and maintenance rules with
regard to a vast number of circumstances.

The tuple class hierarchy includes the classes StructureTuple, MessageTu-
ple, HopTuple, MetricTuple, and SpaceTuple. In the following, we are going
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to describe in detail these classes of the hierarchy, showing how they can be
exploited.

TotaTuple

MetricTuple

StructureTuple

SpaceTupleHopTupleMessageTuple

Fig. 7.9. The TOTA tuples’ class hierarchy

StructureTuple

The only child of the TotaTuple class is the class StructureTuple. This class
is a template to create distributed data structures over the network with a
basic propagation rule. However, propagated StructureTuples are still not self-
maintained. This means that if the topology of the network changes, tuples
are left untouched. This kind of tuple can be used, for example, to implement
fields in applications where the network infrastructure is relatively static and
thus there is no need to constantly update and maintain the tuple shape
because of network dynamics.

The StructureTuple class inherits from TotaTuple and implements the su-
perclass method propagate realizing a propagation schema that is at the core
of the whole tuples class hierarchy (see code in Fig. 7.10; note that, being
final, it cannot be overloaded).

The class StructureTuple implements the methods decideEnter, decide-
Propagate, changeTupleContent, and makeSubscriptions so as to realize a
breadth-first, expanding ring propagation. The result is simply a tuple that
floods the network without changing its content:

• When a tuple arrives in a node (either because it has been injected or
because it has been sent from a neighbor node) the TOTA middleware
executes the decideEnter method that returns true if the tuple should
enter the node (i.e., it should propagate in that node) and actually execute
there, and false otherwise. The standard implementation returns true if the
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public final void propagate() {

if(decideEnter()) {

boolean prop = decidePropagate();

changeTupleContent();

this.makeSubscriptions();

tota.store(this);

if(prop)

tota.move(this);

}}

Fig. 7.10. Propagate method in the StructureTuple class

middleware does not already contain that tuple (i.e., the default is that a
tuple propagates everywhere).

• If the tuple is allowed to enter a node, the method decidePropagate is run.
It returns true if the tuple has to be further propagated in other nodes,
and false otherwise. The standard implementation of this method always
returns true, enabling the tuple to propagate to all the peers recursively.

• The method changeTupleContent changes the content of the tuple. The
standard implementation of this method does not change the tuple content.

• The method makeSubscriptions allows the tuple to place subscriptions
in the TOTA middleware. As stated before, in this way the tuple can
react to events even when they happen after the tuple has completed its
execution, typically to perform self-maintenance operations. The standard
implementation does not subscribe to anything.

• After that, the tuple is inserted in the TOTA tuple space by executing
tota.store(this). Again, without this method the tuple would propagate
across the network without leaving anything behind. Thus no distributed
data structure would be ever formed.

• Finally, if the decidePropagate method returned true, the tuple is propa-
gated to all the neighbors by the command tota.move(this). The tuple will
eventually reach neighboring nodes, where it will be executed again. It is
worth noting that the tuple will arrive in the neighboring nodes with the
content changed by the last run of the changeTupleContent method.

Programming a TOTA tuple to create a distributed data structure ba-
sically reduces to inheriting from the above class to define any content for
tuples and to overloading the four methods specified above to customize the
tuple propagation and self-maintenance behavior.

Here, in the following, we present some examples to show the expressive-
ness of the introduced framework. These are not tuples in the TOTA tuples
class hierarchy; they are examples of how a programmer could use the hier-
archy to create application-specific tuples. Specifically, we are going to show
two examples of tuples: (i) NMGradient and (ii) TimeDecayingFloodTuple.

The NMGradient is a tuple that floods the network and has an integer
hop as content, whose value is incremented by one at every network hop. This
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implements a sort of basic field with a strength which increases moving farther
form the source. To code this tuple one has basically to (i) place the integer
hop in the object state, (ii) overload changeTupleContent, to let the tuple
increase the hop value counter at every propagation step, and (iii) overload
decideEnter so as to allow the tuple to enter in a node not only if there is no
tuple yet in the node – as in the base implementation – but also if there is a
tuple with a higher hop count. This allows the tuple to enforce the breadth-
first propagation assuring that the hop count truly reflects the hop distance
from the source (see code in Fig. 7.11).

The TimeDecayingFloodTuple is a tuple that floods the network and has
an integer value as content. The integer value remains constant as the tuple
spreads in the network. However, it decays with time, causing tuple deletion
once the value reaches zero. To code this tuple one has basically to (i) place
the integer counter in the object state, (ii) overload the makeSubscriptions
method, to let the tuple subscribe to the peer internal clock associating the
TIME reaction to every clock tick, and (iii) finally, in the react method, de-
crease the integer value and delete the tuple as soon as the value reaches zero
(see code in Fig. 7.12).

public class NMGradient extends StructureTuple {

public int hop = 0;

public boolean decideEnter() {

super.decideEnter();

NMGradient prev =(NMGradient)tota.keyrd(this);

return (prev == null ||

prev.hop > (this.hop + 1));

}

protected void changeTupleContent() {

super.changeTupleContent();

hop++;

}}

Fig. 7.11. The NMGradient (i.e., Not Maintained Gradient) is a tuple that floods
the network and have an integer hop-counter that is incremented by one at every
hop

The rest of the hierarchy of Fig. 7.9 has been built in the same way.
Programmers can inherit from the hierarchy by further customizing a tuple’s
propagation to match a specific application’s requirements.

MessageTuple

MessageTuples are used to create messages that are not stored in the local
tuple spaces, but just flow in the network as sorts of “events.” The basic
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public class TimeDecayingFloodTuple extends StructureTuple {

private int value = 300;

public void makeSubscriptions() {

SensorTuple st = new SensorTuple("TIME","*");

tota.subscribe(st, (ReactiveComponent)this,"TIME");

}

public void react(String reaction, String event) {

if(reaction.equalsIgnoreCase("TIME")) {

value = value -5;

if(value <= 0) {

tota.delete(this);

return;

}}}}

Fig. 7.12. The TimeDecayingFloodTuple is a tuple that floods the network with an
integer value. The integer value remains constant as the tuple spreads in the network.
However, it decays with time, causing tuple deletion once the value reaches zero

structure is the same as StructureTuple, but a default subscription is in charge
of erasing the tuple after some passed time. Note that it would not be possible
to simply remove the tota.store() method from the propagate method, because
previously stored values are used to block the tuple’s backward propagation.
To this end the tuple’s value can be deleted only after the tuple “wave front”
has passed. It is worth noting that setting the time before deletion is not
trivial. If the tuple propagates in a breadth-first manner, it can simply be set
to the time the tuple “wave front” takes to proceed two hops away. However,
if the tuple is propagated to a specific direction and the network topology is
closed in a circular track, this can lead to a message that continues circulating
trough the network endlessly. For this reason, in such asymmetrical situations
MessageTuples must be used really carefully.

Message tuples could be fruitfully applied as a communication and event
propagation mechanism. These tuples, in fact, could embed in their propaga-
tion rule a routing policy, without requiring the presence of specific routing
agents to properly forward them. Moreover, it is easy to implement with these
tuples several different communication patterns like unicast or multicast. Fi-
nally, by combining these tuples with StructureTuples, it is easy to realize a
publish-subscribe communication mechanism, in which StructureTuples create
subscriptions paths, to be followed by MessageTuples implementing events.

It is worth noting that this kind of interaction pattern is exactly the one
exploited in the information retrieval application (i.e., second solution) in the
museum case study (see “Query Tuple” and “Answer Tuple” in Fig. 7.1).

Here, in the following, we present some examples to show the expres-
siveness of the introduced framework. Specifically, we are going to show two
examples of tuples: (i) UnicastTuple and (ii) DownhillTuple.
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The UnicastTuple is a tuple that models a unicast message directed to
a specific destination. Since, at the middleware level, TOTA promotes only
one-hop broadcast communication, the unicast facility has to be coded within
the tuple. A UnicastTuple does not implement routing algorithms and it is
intended to reach a node directly connected (i.e., one hop) to the source. To
code this tuple one has basically to: (i) place in the object state a string
representing the destination address, (ii) overload the decideEnter method so
as to allow the entrance only if the node is the intended destination. Looking
at the code, it is worth noting that entrance is allowed also in the source
node. This is to allow the tuple to be injected in the TOTA network in the
first place (see code in Fig. 7.13).

The DownhillTuple is a tuple that propagates by following downhill the
trail left by another tuple. Specifically, the DownhillTuple follows downhill
another tuple whose content is an integer value typically increasing with the
distance from the source (e.g., NMGradient). To code this tuple one has ba-
sically to overload the decideEnter method to let the tuple enter only if the
value of the tuple being followed (e.g., NMGradient) in the node is lower than
the value on the node from which the tuple comes (see Fig. 7.14).

Note that if there are multiple paths going downhill, the tuple follows
downhill each of them. This can be a limit, in some scenarios, because it
wastes bandwidth. However, it improves robustness since it is able to cope
with network link failures. Eventually, it would be very easy to base this tuple
on the above UnicastTuple to avoid multipath propagation.

public class UnicastTuple extends MessageTuple {

public String destIP = new String();

public boolean decideEnter()

{

boolean cond0,cond1,cond2;

cond0 = super.decideEnter();

cond1 = tota.toString().equals(this.getSourceFromId());

cond2 = (StaticUtilities.

peerNameResolver(tota.toString()).

equalsIgnoreCase(destIP));

return cond0 && (cond1 || cond2);

}

public void setDestinationIP(String destIP)

{

this.destIP = destIP;

}}

Fig. 7.13. The UnicastTuple is a tuple that models a unicast message directed to
a specific destination
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public class DownhillTuple extends MessageTuple {

public String name;

public int oldVal = 9999;

NMGradient trail;

public DownhillTuple() {

trail = new NMGradient();

trail.setContent("ciao");

}

public boolean decideEnter() {

super.decideEnter();

int val = getGradientValue();

if(val < oldVal) {

oldVal = val;

return true;

}

else

return false;

}

/* this method returns the minimum hop-value of the

NMGradient tuples matching the tuple to be

followed in the current node */

private int getGradientValue() {

Vector v = tota.read(trail);

int min = 9999;

for(int i=0; i<v.size(); i++) {

NMGradient gt =

(NMGradient)v.elementAt(i);

if(min > gt.hop)

min = gt.hop;

}

return min;

}}

Fig. 7.14. The DownhillTuple is a tuple that propagates by following downhill the
trail left by another tuple. Specifically, the DownhillTuple follows downhill another
tuple whose content is an integer value typically increasing with the distance from
the source (e.g., NMGradient)

HopTuple

This kind of tuple inherits from StructureTuple to create distributed data
structures that self-maintain their structure in an automatic way, to reflect
changes in the network environment (see Fig. 7.15).

Similarly to the previous NMGradient in Fig. 7.11, this class overloads
the decideEnter method so as to allow the entrance not only if the tuple is
not in the node yet – as in the base implementation – but also if there is a
tuple with a higher value for the hop variable. This allows the tuple to enforce
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Fig. 7.15. HopTuples self-maintain despite topology changes. (a) The tuple on the
gray node must change its value to reflect the new hop distance from the source Px.
(b) If the source detaches, all the tuples must auto-delete to reflect the new network
situation

the breadth-first propagation, assuring that the hop variable truly reflects the
actual hop distance from the source. Moreover, this class overloads the empty
makeSubscription method of the StructureTuple class, to let these tuples react
to changes in the network topology, by adjusting their values to be consistent
(after some delays) with the true hop distance from the source (i.e., the integer
hop counter value is adjusted in response to network dynamics). A detailed
description of how does the self-maintenance algorithm works will be presented
later in this chapter.

Self-maintained tuples like HopTuples are fundamental to enable field-
based coordination also in the presence of dynamic networks. For instance,
tuples to be employed in motion coordination, like the meeting tuples in the
case study (see Fig. 7.1, “Meeting Tuple”) have to be compulsorily realized by
self-maintained tuples, to ensure the adaptive acquisition of up-to-date infor-
mation. From a software engineering point of view, the value of self-maintained
tuples is that programmers have simply to take care of agents injecting proper
tuples in the system, without worrying at all about how agents could deal with
the network dynamism: all the burden is moved away from the agents and en-
capsulated in the self-maintenance algorithms of the tuples.

To clarify the above concepts and to show again the expressiveness of the
TOTA tuples, we are going to give two other examples of tuples: (i) Bound-
edTuple and (ii) FlockingTuple, both derived by inheritance from HopTuple.

A BoundedTuple is simply a tuple whose integer content reflects the dis-
tance from the source and that is propagated only within a limited distance
(RANGE) from the source. Since the hop variable is maintained in the super-
class HopTuple, coding this tuple is trivial. One has basically to overload the
decideEnter method to enable the entrance only if the hop value is below the
specified distance value (see code in Fig. 7.16).

A FlockingTuple creates a data structure that has a minimum at a specific
distance (RANGE) from the injecting agent.

The name of this tuple comes from the fact it can be employed to realize an
interesting application allowing a group of agents to maintain a specific grid
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formation [14], as from Chap. 5. To implement such a coordinated behavior
with TOTA, we can have each agent generate a tuple (FlockingTuple) whose
value assumes the minimal value at a specific distance from the source, the
distance expressing the intended spatial separation between agents. The final
shape of this field approaches the function depicted in Fig. 5.4(top) in Chap.
5. FlockingTuples are always updated to reflect peers’ movements. To coordi-
nate movements, peers have simply to locally perceive the generated tuples
and follow them downhill. The result is a globally coordinated movement in
which peers maintain an almost regular grid formation (see Fig. 5.4(bottom)
in Chap. 5).

Coding this tuple is trivial; one has simply to (i) place in the object state
an integer representing the flock value, and (ii) overload the changeTuple-
Content to let the tuple assume the intended value of this flock value as the
tuple propagates. The normal hop variable is still maintained in the superclass
HopTuple (see code in Fig. 7.17).

public class BoundedTuple extends HopTuple {

private static final int RANGE = 3;

public boolean decideEnter() {

boolean b1 = super.decideEnter();

boolean b2 = (hop <= RANGE);

return b1 && b2;

}}

Fig. 7.16. A BoundedTuple is simply a tuple whose integer content reflects the
distance from the source and that is propagated only within a limited distance
(RANGE) from the source

public class FlockingTuple extends HopTuple {

private static final int RANGE = 3;

public int value = RANGE;

protected void changeTupleContent() {

super.changeTupleContent();

if(hop <= RANGE)

value --;

else

value ++;

}}

Fig. 7.17. A FlockingTuple creates a data structure that has a minimum at a specific
distance (RANGE) from the injecting agent
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MetricTuple and SpaceTuple

In some application scenarios, and possibly even in the museum case study, it
can be helpful to ground tuple propagation to actual physical distances rather
than to network distances (e.g., 300 m NORTH from the source, rather than
30 network hops from the source). To this end, a common shared coordinate
system must be established over the network. Relying on such a coordinate
system, nodes are provided with a common knowledge of where the NORTH
is and what the physical distance between them is.

Metric and Space tuples allow the creation of common shared coordinate
systems across the TOTA network. In particular, both these tuples have three
float numbers (x, y, z) as a content. Once one of these tuples is injected in
the network, it propagates changing its content so that (x, y, z) reflects the
coordinates of the node in a coordinate system centered where the tuple was
first injected (see Fig. 7.18).
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Fig. 7.18. Metric and Space tuples create a shared coordinate system, centered at
the node that injected the tuple

The current implementation of Metric and Space tuples supports either the
presence of a GPS-like device or a RADAR-like device (see Subsect. 7.1.3).

The implementation of Metric and Space tuples, given the availability of
a GPS-like device, is straightforward. Once injected, the tuple will read the
injecting node GPS coordinates and will initialize its content to (0, 0, 0). Upon
reaching a new node, it will change the content to the GPS coordinates of the
new node translated back by the injecting node coordinates. Tuple update
proceeds similarly: when a node moves (not the source one), the tuple locally
changes its content by accessing the new GPS information.
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The implementation of Metric and Space tuples, given the availability of
a RADAR-like device, is more complicated. Here the goal is to create a tuple
class that combines the local coordinate systems, built by the RADAR-like
devices, into a shared coordinate system, with the center in the node that
injected the tuple.

To explain how this can be achieved let us consider Fig. 7.19. The tuple
(0, 0, 0) travels from P1 to P2 and it changes its content there. Specifically, it
subtracts from its old value the coordinates of P1 as sensed by the RADAR-
like device in P2. Thus (0− (−100), 0− (−20), 0−0) = (100, 20, 0). It is worth
noting that, in the figure, all the private coordinate systems are aligned. So
combining them is just a matter of adding the coordinates. However, this
perfect alignment is unlikely to happen and slightly more complex (geometric)
combination will be required. Further propagation hops (from P2 to P3, and
form P2 to P4) proceed analogously.

Tuple update proceeds similarly: once these tuples have been propagated,
if a node moves (not the source one), only its tuple local value is affected,
while all the others are left unchanged. In fact, the other’s physical positions
with respect to the source do not change. Upon a movement Metric and Space
tuples read the RADAR and adjust their values accordingly (see Fig. 7.20).
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Fig. 7.19. Metric and Space tuples create the shared coordinate system, by having
each node change the content of the tuples on the basis of the coordinates provided
by the RADAR-like device

To understand the difference between Metric and Space tuples, it is fun-
damental to focus on what happens when the source moves. In theory all the
tuple instances must be changed because the origin of the coordinate system
has shifted. This is exactly what happens in MetricTuple where the origin of
the coordinated system is anchored to the source node. This of course can
lead to scalability problems, especially if the source is highly mobile. What
happens if also the source updates its value locally, without further propagat-
ing? In this case, the origin of the coordinate system remains where the tuple
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Fig. 7.20. Self-maintenance in Metric and Space tuples: since the tuple on P3 does
not change position with respect to the tuple source, it does not change its content.
P2 updates its content on the basis of the new RADAR reading

was first injected, even if no nodes are in that position. The coordinate system
is maintained by the network, but not affected by it. This is the SpaceTuple
implementation.

To further clarify the above concepts and to show again the expressiveness
of our abstractions, we are going to show two other examples of tuples: (i)
DistanceTuple and (ii) FlockMetricTuple.

A DistanceTuple is a tuple that holds the spatial distance from the source
(note that the variables x, y, z are maintained in the MetricTuple and SpaceTu-
ple classes). In the example, DistanceTuple inherits from MetricTuple and so
it represents the distance from the source, even when the source moves. How-
ever, if the same tuple would have inherited from SpaceTuple, then it would
have expressed the distance from the point at which it had been originally
injected (see code in Fig. 8.6), ignoring later movements of the source.

A FlockMetricTuple encodes in its shape the flock field described in Fig.
5.4(left). This tuple can be conveniently used to maintain a flock formation in
the above three robots application. In fact, the robots can locate at specific
distances from each other on the basis of their real physical distances rather
than some network hop distances (see code in Fig. 7.22).

7.3.3 Programming Agents

The last step involved in programming a TOTA application is coding the
agents that specify the required TOTA tuples to enforce specific coordination
tasks and that then use the TOTA API to inject such tuples in the system
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public class DistanceTuple extends MetricTuple {

public int value = 0;

protected void changeTupleContent() {

super.changeTupleContent();

value = (int)Math.sqrt((x*x)+(y*y)+(z*z));

}}

Fig. 7.21. A DistanceTuple is a tuple that holds the spatial distance from the source

public class FlockMetricTuple extends MetricTuple {

private int a = 30;

public int value = 0;

protected void changeTupleContent() {

super.changeTupleContent();

int d = (int)Math.sqrt((x*x)+(y*y)+(z*z));

value = (d*d*d*d) - 2*(a*a)*(d*d); // d^4 - 2a^2d^2

}}

Fig. 7.22. A FlockMetricTuple encodes in its shape the flock field described in Fig.
5.4a

and/or read them. Here we give two detailed examples about how to program
agents in the museum case study.

The tuples that our example agents use are the NMGradient and the Down-
hillTuple presented in the previous section (actually, the very first line of NM-
Gradient should be changed to inherit from HopTuple, so as to be maintained
despite the movements of the source agent).

Gathering Contextual Information

Let us firstly focus our attention on the task of gathering contextual informa-
tion. Following the second approach sketched in Subsect. 7.1.2, we consider
the solution in which art pieces (i.e., agents running within art pieces in the
embedded museum infrastructure) are programmed to sense the income of
query tuples propagated by tourists (i.e., by their agents) and to react by
propagating backward to the requesting tourists their location information.
These agents are coded by the ArtAgent and the QueryAgent represented in
Fig. 7.23 and Fig. 7.24, respectively.

In more detail, a QueryAgent of a tourist looking for information about
the da Vinci’s Monna Lisa performs just two simple operations: it injects in
the network a tuple of class NMGradient with a content string representing
the name of the searched painting. Then it subscribes to the income of all the
DownhillTuples (which are assumed to describe the searched art piece and
its location) having as the first content field “Monna Lisa.” The associated
reaction displayReaction is executed on receipt of such a tuple to simply print
out the content of the received event tuple in the user interface.
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Correspondingly, each ArtAgent is identified by a description represent-
ing the art piece it stands for (e.g., “Monna Lisa”). ArtAgent subscribes to
the local income of those NMGradient tuples querying for the art piece they
represent. The reaction to the income of such a tuple event is to inject a
DownhillTuple that simply follows backward the query tuple to reach the
QueryAgent issuing the request.

public class ArtAgent implements AgentInterface {

private TotaMiddleware tota;

/* this is the piece of art description and location */

private String description, location;

/* agent body */

public void start() {

/* subscribe to the query */

NMGradient query = new NMGradient();

query.setContent(description);

tota.subscribe(query,this,"answerQuery");

}

/*code of the reaction, here it injects the

answer tuple. The answer will be coded by a

DownhillTuple following the query.*/

public void react(String reaction, String event) {

NMGradient query = Tuple.deserialize(event);

DownhillTuple answer = new DownhillTuple(query.content);

answer.setContent(description+" "+location);

tota.inject(answer);

}}

Fig. 7.23. Agent example: ArtAgent

Meeting

With regard to the meeting application, the algorithm followed by Meeting-
Agents (see code in Fig. 7.25) is very simple: agents have to determine the
farthest peer, and then move (or better, to suggest their user where to go)
by following downhill that peer’s presence tuple, coded in the form of an
NMGradient tuple. To this end, each agent injects an NMGradient to notify
other agents about its location. Then, it will read the NMGradients injected
by the other agents, extract the one corresponding to the farthest agent, and
display the direction to go to follow the tuple downhill. In this way, agents
will eventually meet at their center of gravity.
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public class QueryAgent implements AgentInterface {

private TotaMiddleware tota;

/* agent body */

public void start() {

/* inject the query */

NMGradient query = new NMGradient();

query.setContent("Monna Lisa");

tota.inject(query);

/* subscribe to the answer: the answer will be

conveyed in a DownhillTuple */

DownhillTuple answer = new DownhillTuple();

answer.setContent("Monna Lisa *");

tota.subscribe(answer,this,"display");

}

/* code of the reaction, here it

simply prints out the result */

public void react(String reaction, String event) {

if(reaction.equalsIgnoreCase("display ")) {

gui.show("Monna Lisa:" + event);

}}}

Fig. 7.24. Agent example: QueryAgent

public class MeetingAgent extends Thread

implements AgentInterface

{

private TotaMiddleware tota;

public void run() {

/* inject the meeting tuple to

participate the meeting */

NMGradient mt = new NMGradient();

mt.setContent(peer.toString());

tota.inject(mt);

while(true) {

/* read other agents’ meeting tuples */

NMGradient coordinates = new NMGradient();

Vector v = tota.read(coordinates);

/* evaluate the gradients and select the

peer to which the gradient goes downhill */

GenPoint destination = getDestination(v);

/* suggest the user to move downhill following

meeting tuple */

gui.show(destination);

}}}

Fig. 7.25. Agent example: MeetingAgent
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7.4 Performances and Experiments

The effectiveness of the TOTA approach is of course related to costs and
performances in managing TOTA distributed tuples. Specifically, the following
fundamental questions arise: what is the cost of propagating tuples? How
much burden self-maintenance adds to the system? Is the process scalable?
How should the different parts of the system account for the costs involved in
TOTA operations? These questions are indeed very general ones: other than
assessing the effectiveness of TOTA, answering them may provide insights
on the general feasibility of deploying field-based applications in much more
detail than what we have done at the end of Chap. 5.

As answers to these questions, we present some of the most relevant exper-
iments we performed with the TOTA middleware. In particular, the overhead
subsection deals with overhead and scalability concerns, while the accounting
subsection illustrates the main operations and system parts responsible for
the TOTA overhead.

7.4.1 Overhead

With regard to overhead costs, it is most important to assess whether the
overhead on a node is related to (i.e., increases with) the dimension of the
network or not. If the answer to this question is negative, then the system is
truly scalable: a node performs well independently of the size of the network
in which it is embedded; if it is affirmative, then any implementation of the
model is probably doomed to failure: the system performances degrade with
an increase in network size.

The cost of propagating a tuple, relying on a multi-hop mechanism, is
something inherently scalable. Each node will have to propagate the tuple
only to its immediate neighbors. The size of the network does not matter
since the global effort to spread the tuple is fairly partitioned between the
constituting nodes.

The scalability of tuples’ maintenance is less clear. To be independent of
the network size, maintenance operations must be confined within a locality
from where something happened that broke the tuple structure (e.g., a net-
work topology change). If it so, concurrent events (e.g., topology changes)
happening at distant points of the network do not add up. If on the contrary
maintenance operations always propagate across the whole network, distant
concurrent events add up and the system does not scale.

In the rest of this subsection we are going to present the results we found
with regard to the different tuples in the hierarchy of Fig. 7.9. However, before
we proceed, a caveat is needed: the following considerations and performances
refer only to classes in the hierarchy. It is clear that, by subclassing one of
these tuples, a programmer can overturn the tuple’s behavior and possibly
introduce complex cascading events that degrade performances.
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Structure and Message Tuple

These tuples are not maintained, so once propagated, they do not add any
burden to the system. It is also worth noting that with regard of tuples like
the TimeDecayingFloodTuple described in Subsect. 7.3.2, which adds a cus-
tom reaction, the answer is still positive, since a change in the tuple (i.e.,
time) affects only the tuple itself, and so it is obviously confined. The same
consideration holds also for the delete operation inherent in message tuples.

HopTuples

With regard to HopTuple, establishing whether maintenance operations are
locally confined is more complicated. Tuples’ maintenance operations are re-
quired upon a change in the network topology, to have the distributed tuples
reflect the new network structure. This means that maintenance operations
are triggered whenever, due to nodes’ mobility or failures, new links in the
network are created or removed. In this context our question becomes, are
the tuples’ maintenance operations confined to an area neighboring the place
in which the network topology had actually changed? This means that if, for
example, a device breaks down (causing a change in the network topology),
only neighboring devices should change their tuples’ values. The size of this
neighborhood is not fixed and cannot be predicted a priori, since it depends
on the network topology (a detailed description of how the self-maintenance
algorithm works is presented later).

What is the impact of a local change in the network topology in real scenar-
ios? To answer this question we exploited the implemented TOTA emulator,
and were able to derive results depicted in Fig. 7.26.

The graph show results obtained by a large number of experiments, con-
ducted on different networks. We considered networks having an average den-
sity (i.e., average number of nodes directly connected to another node) of 5.7,
7.2, and 8.8 respectively (these numbers come from the fact that in our ex-
periments they correspond to networks composed of 150, 200, and 250 peers
over the same area – the density increases because peers are more packed).
In each network, a tuple, incrementing its content at every hop, had been
propagated. Nodes in the network moved randomly, continuously changing
the network topology. The number of messages sent between peers to keep
the tuple shape coherent were recorded. Fig. 7.26a shows the average num-
ber of messages sent by peers located in an x hop radius from the origin of
the topology change, while Fig. 7.26b shows the same values, but in these
experiments only the source of the tuple moved, changing the topology.

The most important consideration we can make looking at these graphs is
that, upon a topology change, a lot of update operations will be required near
the source of the topology change, while only few operations will be required
far away from it. This implies that, even if the TOTA network and the tuples
being propagated have no artificial boundaries, the operations to keep their
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Fig. 7.26. Experimental results: locality scopes in tuple’s maintenance operations
emerge in a network without predefined boundaries. (a) Topology changes are caused
by random peer movements. (b) Topology changes are caused by the movement of
the source peer

shape consistent are strictly confined within a locality scope (Fig. 7.26). This
fact supports the feasibility of the TOTA approach in terms of its scalability.
In fact, this means that, even in a large network with a lot of nodes and
tuples, we do not have to continuously flood the whole network with updates,
eventually generated by changes in distant areas of the network. Updates are
almost always confined within a locality scope from where they took place.

These results are even more significant if compared to the average network
diameter (averaged over the various experiments). Considering the experimen-
tal results in Fig. 7.26, it is easy to see that the number of operations required
to maintain a tuple falls close to zero well before the average diameter of the
network, thus confirming the goodness of our results.

Metric and Space Tuple

With regard of these tuples, determining if their self-maintenance operations
are confined is rather easy. In Subsect. 7.3.2 we said that a Metric tuple’s
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maintenance is confined to the node itself for all the nodes apart from the
source, while it spreads across the whole network if the source moves. So the
answer for Metric tuples is partially negative and for this reason they must be
used carefully, maybe with custom rules in their propagation rules limiting a
priori their scope, or by triggering update operations only if the source node
moves by a certain amount (e.g., triggering update only if the source moves
at least 1 m). The answer for a Space tuple, in contrast, is a clear affirmative
since maintenance is strictly locally confined. All the above considerations
are good hints for the feasibility of the model, showing that it can scale to
different application scenarios.

7.4.2 Accounting

While performing testing and experiments, it is very important to understand
how the different parts of the system contribute to the gross amount of the
operations. Specifically, we focus on two important measures.

In every peer-to-peer system, like TOTA, there are two kinds of operations
that can be attributed to a node: those caused by the application on that node
and those required to support other peers’ operations (e.g., forwarding another
peer’s messages). In our opinion, the ratio between these two is a fundamental
measure for the evaluation of a P2P system.

In testing TOTA, we found out that a large number of operations is caused
by the pattern matching access to tuples. Basically, pattern-matching is the
single most important operation performed by TOTA. In fact, it is invoked
either by read operations or by the event interface while matching an event
against subscriptions. For this reason another important measure is the ra-
tio between pattern-matching operations and other operations (e.g., sending
messages, creating tuples, etc.).

To find out these ratios we exploited our simulator. Specifically, we set
up a TOTA network with 100 nodes. We installed an agent on every node
performing a TOTA-intensive application (each agent injects several tuples
and keeps on reading for incoming tuples). We then examined the trace of
operations happening on each node [72], stripping out those operations related
to the simulator itself rather than the TOTA middleware (e.g., simulator GUI
operations). Finally, we averaged the different traces to find out the trace
of operations performed by an average node. On the basis of this trace, we
counted how many operations were initiated by the agent on the node and
how many by neighbors nodes, and how many operations were about pattern-
matching and how many about the rest of the TOTA API. The results of the
above ratios are in Fig. 7.27.

We can see that TOTA clearly promotes an altruistic P2P approach. Look-
ing at Fig. 7.27a, it appears that almost half of the operations are performed
to support other node’s activity. On the one hand, in our opinion, this again
supports scalability. The burden of a global operation is evenly distributed
across the network. On the other hand, it can be source of problems in those
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Fig. 7.27. (a) Agent operations vs. TOTA operations. (b) API operations vs. pat-
tern matching

scenarios where an individual node may wish to save resources and not collab-
orate with others (e.g., in a sensor network a node may wish to save battery
energy by not helping neighbors). In our opinion, Fig. 7.27b is more related to
the current implementation of the system, rather than to the abstract TOTA
model. A great percentage of pattern-matching operations reveals the impor-
tance of this operation in the current implementation, and calls for optimized
algorithms to deal with this kind of operation.

7.4.3 Details on Hop Tuple’s Self-Maintenance

One of the most important algorithms in our model is the one allowing Hop
tuples to self-maintain their shape despite network dynamism. For obvious
scalability reasons, and to be well-suited to our model, we would like such an
algorithm to be completely distributed.

Let us consider the case of a tuple incrementing its integer content by
one at every hop, as it is propagated far away from its source. Given a local
instance of such a tuple X, we will call Y X’s supporting tuple if Y belongs to
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the same distributed tuple as X (recall that TOTA marks all the tuples with
an unique ID), Y’s distance from X is one hop, Y’s value is equal to X’s value
minus one. With such a definition, X’s supporting tuple is a tuple that could
have created X during its propagation. Moreover, we will say that X is in a
safe state if it has a supporting tuple, or if it is in the node that first injected
the tuple (i.e., its hop value = 0). We will say that a tuple is not in a safe state
if the above condition does not apply (i.e., it has no supporting tuple, and its
hop counter is greater than 0). Each local tuple can subscribe to the income
or the removal of other tuples of its type in its one-hop neighborhood. The
basic idea is that a tuple that is not in a safe state should not be there, since
no neighbor tuple could have created it. Upon a removal, each tuple reacts by
checking if it is still in a safe state.

In the case in which a tuple is not in a safe state, it erases itself (after
some time) from the local node. This eventually causes a cascading deletion
of tuples until a safe state tuple can be found, or the source is eventually
reached, or all the tuples in that connected sub-network are deleted.

In the case in which a tuple is in a safe state, the removal of a neighbor
tuple triggers a reaction in which the tuple propagates to that node. It is worth
noting that this mechanism is the same as when a new node is connected to
the network. Similar considerations apply with regard to tuple arrival: when a
tuple senses the arrival of a tuple having a value higher than its own plus one,
it means that, because of nodes’ mobility, a shortcut leading to the source has
been created. In such a situation the tuple can propagate to the new node to
overwrite the previous tuple, fixing the tuple’s shape.

This set of mechanisms it is enough to make Hop tuples self-maintain. To
prove the validity of this algorithm we will show its correctness with regard
to four special cases (see Fig. 7.28). The rationale behind these four special
cases is found by answering the following questions: does the network topol-
ogy change imply a link creation or removal? Is the changed link the only
one connecting two networks or are there others? It is rather clear that the
four possible yes/no answers to these questions (four special cases) can be
generalized to cover all the other possibilities. The four special cases proving
the correctness of the Hop tuple’s self-maintenance are reported in Fig. 7.28.
In Fig. 7.28a the link between A and B breaks down. Since the tuple on B has
no supporting tuples, it is not in a safe state anymore. Thus it deletes itself.
After that, the tuple on C does not see any supporting tuples; thus it deletes
itself. This applies recursively to the bottom of the network. After that, the
distributed tuple is in a consistent state with respect to the new topology. In
Fig. 7.28b a new link between A and B is created. The tuple on A propagates
to B and then recursively to the bottom of the network. In Fig. 7.28c the link
between A and B breaks down. As in case (a) this causes a cascading deletion
until a safe state tuple is reached. In this example, the safe state tuple is in
node D. When this tuple sees that the tuple on C gets deleted it can propagate
toward C, fixing the gap. The propagation applies recursively to the bottom
of the network, adjusting the distributed tuple. In Fig. 7.28d a new link is
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created between C and D. The tuple on D finds in its neighbor a tuple with
value greater than its own plus one (i.e., n + 2 > k + 1). Thus, it propagates
to C, overwriting the tuple on C. This process applies recursively until the
correct node is found (i.e., where the two branches of the tuple seamlessly
merge: n + 1 = k + 2).
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Fig. 7.28. Hop maintenance in four special cases

Clearly, if the network constantly changes its topology faster than the
time required by the maintenance algorithm to complete, the process could
never converge. However, the self-maintenance algorithm ensures that, once
the network stabilizes, the algorithm eventually makes the overlay distributed
tuple converge to a consistent state.

In addition to the above considerations, it is important to remark that
the above algorithm suffers from the critical race problem depicted in Fig.
7.29. The figure shows a simple network where a Hop overlay tuple (called T)
has been spread and deployed by the top node (T = 0 at the source). In (a)
the link between the top node and the rest of the network breaks down. This
makes the bottom subnetwork detached from the source of the tuple and this
should lead to the complete deletion of the tuple in the bottom subnetwork. In
(b) and (c) the tuple starts deleting with the cascading mechanism described
above. In (d), however, it can happen that the tuple on Y (supported by the
tuple on X that did not have the time to delete) propagates to Z. In fact, the
tuple on Y perceives the missing value in Z as a hole in the overlay, and so it
tries to adjust it. This is a problem because it starts a spurious propagation
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Fig. 7.29. From (a) to (d), a sequence of self-maintenance operations that create
bad cycles

cycle that can possibly last forever, consuming resources, and preventing the
overlay tuple to eventually converge to the correct distribution.

The basic approach to overcome this problem is to introduce delays in the
overlay tuple operations. There are two possible implementations of this idea:
(i) A node seeing a deletion must wait for the other neighbor nodes to possibly
delete the tuples. Only after that time can it try to propagate the tuples. (ii)
A node that is not in a safe state must wait to delete itself in order not to
create “space” for cycles to transit. Cycles can start, but they terminate if
no space is left for propagation (i.e., the distributed tuple is already around
everywhere).

We opted for the latter approach in order to reduce the time an agent
must wait before receiving an updated tuple (although the tuple it receives
may temporarily be corrupted by cycles).

Let us explain the adopted mechanism in detail. We set an artificial delay
before giving the chance to a tuple to delete itself. During that time, the tuple
goes in a “zombie” (i.e., pre-delete) state that has two main properties: (i)
the tuple is no longer a supporting tuple, and (ii) the tuple cannot further
propagate. Since the tuple is no longer supporting anything, it can initiate
cascading (pre-)deletion. Such pre-deletions extinguish cycles since the tuple
in a “zombie” state cannot propagate further. After the delay, the tuple in the
“zombie” state actually deletes, and the overlay tuple updates its distribution,
avoiding cycles.

The setting of a fixed-delay parameter in a distributed system is always
troublesome. However, in our case it is not critically important to carefully
set a correct value. If the correct value is set, the cycles are eliminated without
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wasting time. If the set value is greater than the correct one, the system still
works, but some time is wasted (i.e., tuples wait more than necessary before
deleting). If the set value is lower than the correct one, the system still works:
cycles can restart, but each time they are smaller and have less time to cycle.
Thus after few iterations they are eliminated anyway.

7.5 Ongoing Activity

Apart from low-level implementation issues (e.g., up to now, TOTA com-
pletely lacks of any kind of security policy to rule accesses to distributed
tuples and their updates), a criticism that can apply to TOTA is the lack
of an effective underlying general methodology, enabling engineers to map a
specific coordination policy into the corresponding definition of tuples and of
their shape (see also Subsect. 5.3.6).

In pursuing this long-term goal, our research focuses on trying to achieve
a wide range of self-organized behaviors by adopting field-based coordination
and the TOTA middleware. If we succeed, such abstractions and the lessons
learned, during the process, will possibly become the embryo of an engineer-
ing methodology suited to develop self-organizing and autonomic multiagent
applications in TOTA.

In the next section we present some advanced applications in radically
different areas, i.e., (i) content-based access to information in MANET, (ii)
control algorithms for metamorphic modular robots, and (iii) a speculative
sensor network application.

The fact that the abstractions promoted by TOTA seem suitable in man-
aging such diverse scenarios, is a good result by itself and a good starting
point for future researches.
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Advanced Applications



8

Content-Based Information Access and
Coordination

Field-based coordination and TOTA, by their very nature, tend to promote
a sort of location-oriented contextual model and location-based methods to
access data and contextual information, and to coordinate agent activities.

At its most basic, a simple field monotonically increasing its strength as
it propagates farther from the source (and the corresponding basic HopTuple
in TOTA) provides information about the distance from the source and some
direction on the location of that source. Starting from this, it is possible to
define, e.g., fields and TOTA tuples that have a limited propagation scope,
thus representing information accessible only from a locality. Or one can select
a specific direction of propagation for a field/tuple, thus making it represents
information accessible only from agents located at specific locations from the
source. In general, field-based coordination and TOTA appear intrinsically
suited to coordinate activities in space (whatever specific space abstraction is
adapted in a specific application context) and to promote a location-dependent
approach to coordination and information access.

However, in several application scenarios, the need to access information
and interact in a global way, based on what information and interactions actu-
ally mean to the application, rather than on where information and interacting
agents are located, arises. That is, information access and interactions should
rely on the actual content of the information or of the data involved in inter-
actions. As a trivial example, a user interested in retrieving the MP3 of “Hey
Jude” from the Internet does not care at all about the location of that file
(e.g., where it is located, on what IP, and by what user). What matters is the
content of the file.

In this chapter we tackle the problem of analyzing how content-based infor-
mation access (and more in general content-based coordination) can be sup-
ported in Mobile Ad-hoc Networks (MANETs). Content-based information
access methods have been widely studied in the area of Internet-scale peer-
to-peer computing [120, 129, 140], to provide functionalities such as the one
sketched in the above trivial example. A few works have addressed this topic
in the area of MANETs [118, 119], and have proposed specific mechanisms
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and strategies to provide effective ways to enforce content-based information
access in MANETs in a robust and adaptive self-organizing way.

Here, rather than presenting novel mechanisms and strategies, we show
that the spatial, location-oriented, abstractions promoted by field-based co-
ordination and TOTA are suited to effectively implement in a simple way the
content-based strategies proposed so far for MANETs.

8.1 Content-Based Information Access in Mobile Ad
Hoc Networks

In most actual application scenarios, the key interest in having the component
devices of a MANET (or of a sensor network) interact with each other derives
primarily from the data and information the various devices hold. The identity
of the individual nodes storing the data tends to be much less relevant than
the actual data they hold. Accordingly, interaction models and information
access should be content-based, in the sense that they should provide access to
information on a content basis rather than on the identity or on the location
of the device in which information is actually stored [17, 55]. More in general,
content-based information access is a key basis for achieving context-awareness
and for enabling interactions in dynamic and decentralized network scenarios,
where identity of nodes and their positions cannot be known a priori.

8.1.1 Geographical Hash Tables

An effective solution to this problem, in the area of dynamic mobile networks,
has been proposed: geographical hash tables (GHT) for information access
[118, 119].

In GHT-based approaches, the specific node that will be devoted to store
given information is determined by the correspondence of the physical location
of the node with the content of the information itself (indicated, e.g., by a
keyword or a list of keywords). All data with the same general content (i.e.,
indicated by the same keywords) is routed to the same network node (not
necessarily the node that originally gathered the data). This is achieved by
having the list of keywords hashed – by a predefined hash function H – to a
particular physical location,

H(KW1,KW2, . . . ,KWn) = (X,Y ),

and by routing the data to the node closest to that physical location. For
this purpose some kind of localization mechanism and a geographic routing
algorithm [18, 75, 81] can be conveniently used. Localization has the purpose
of assigning to the nodes of the network some coordinates related to some
coordinate frame. A geographic routing algorithm is a mechanism that takes
advantage of the established coordinate frame to route messages to a specific
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Fig. 8.1. Content-based information access in a rescue scenario. (a) Px dispatches an
“injury report” describing the injured people found. It evaluates H(“injury report”)
that results in (35, 25). It then sends the report to the node closest to that location
(b) Py looks for “injury report” by querying the only node that could possibly have
it: the one at H(“injury report”)=(35, 25). (c) The peer closest to (35, 25) receives
the query and replies with a message routed back to the coordinates of the inquiring
node

location in the coordinate frame or, in the case in which no nodes exist at
that exact location, to the node closest to it.

Geographic routing algorithms inherently support communication decou-
pling in that senders and receivers are decoupled by the coordinate frame. For
example, a sender can send a message to an unknown receiver located at a
specific location and the message will be received by whoever is closest to that
location. Content-based requests for information based on geographical hash
tables extend this schema: information is sent to the location derived from
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the hashing function applied to the list of keywords; a request for informa-
tion, described by a specific list of keywords, is sent to the node at the location
indicated by the hashing of that list. In this way, information and requests
meet in a rendezvous node without any kind of flooding being involved (see
Fig. 8.1) and without the producer of information being aware of the nodes
that are interested in it. Such uncoupling, as already stated in this book, is of
paramount importance in modern large-scale and dynamic network scenarios.

In addition, geographical routing algorithms and geographical hash tables
are intrinsically adaptive and robust, in that it does not really matter if the
network changes its topology or if the node at a specific location moves or
disappears: the routing of data is only interested in the node closest to the
target location, no matter what this node is and no matter how far from the
exact location it is.

8.1.2 Applications and Issues

Content-based information access is well-suited in a lot of MANET scenarios.
In fact, to provide nodes with an uncoupled and anonymous communication
mechanism with which to exchange information in a scalable and efficient way
is a key point for several emerging scenarios.

In the pervasive computing scenario described in Fig. 8.1, for example, the
members of a rescue team (e.g., the guides of a museum in charge of dealing
with a fire alarm) can be made aware of relevant information (e.g., “there are
people injured in this wing of the museum!”) in a totally uncoupled way, with-
out even knowing each other. Simply, whenever an injury has to be reported,
it can be hashed to a specific location (based on a specific “injury report”
keyword) and stored at the node closest to the resulting hashed location;
whenever members of the team want to know if there are injury reports, they
can hash a query with the appropriate keyword to have it reach the proper
location, and eventually discover if there are any. Such a mechanism allows,
for example, members of the team to move in the museum, members to dis-
appear, or new members to join the team, without preventing the possibility
of fruitfully exchanging relevant information.

Other than the request-response information access mechanism depicted
in Fig. 8.1, content-based information access also allows us to realize publish-
subscribe (event-based) mechanism [35] rather easily. To realize this mecha-
nism, components could post subscriptions to specific places in the network
(by the above-described hash-based mechanism). Events would be routed (by
the same hash function) to the node that holds related subscriptions. There,
possible matches between subscriptions and events would be computed. The
results would be sent back to the actual subscriber node. With regard to
the case study, such a kind of mechanism would allow us to realize reactive
behaviors. For example, a member of the rescue team could be notified by re-
quests for help made by others. Other interesting and articulated applications
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of these ideas, applied to a peculiar sensor network scenario, are reported in
Chap. 10.

Besides the application, it is important to understand that content-based
information access decouples node interactions at the cost of introducing an
overhead. Specifically, nodes are requested to act as points of rendezvous ac-
cording to their position in the physical space. This implies that, when a node
moves from one region to another, it possibly needs to migrate data associ-
ated with its old location to other nodes that eventually become closer to that
location, and, vice versa, it can potentially obtain new data from nodes in the
new region. Moreover, if nodes are not distributed uniformly in the geograph-
ical space spanned by the network, the scheme can lead to load imbalance
with some nodes responsible for much more information than others.

Internet-oriented content-based mechanisms to access information [120,
129] solve this problem by introducing a virtual geographical space, built as
an overlay over the physical network, on which it is possible to map nodes
and the outcomes of the hash function (an approach known as Distributed
Hash Tables, or DHT) . This approach can work because the virtual space,
as a physical geographical space, decouples content-based information access
from the actual locations and identities of nodes. Thus, if a node moves in
the physical space, it may remain still in the virtual one, and if nodes are
clustered in the physical space, they may be evenly distributed in the virtual
one. It is, however, fundamental to understand that it is feasible to realize
such a kind of virtual space only if a long-range multi-hop routing protocol
is available. Such a long-range routing protocol allows distant peers in the
physical space to be neighbors in the virtual one. On the Internet, of course,
TCP/IP well serves this purpose. In contrast, the situation in MANETs may
be different and long-range routes may be very hard to maintain. Moreover,
to the best of our knowledge, all the Internet-based systems assume the pres-
ence of only a single huge virtual space on which to perform content-based
information access. All the nodes connect to that virtual space, and the pos-
sibility that multiple spaces can coexist in the network is disregarded. In a
MANET scenario, however, it is likely that separate disjoint groups of nodes
will start a content-based information access application. If these groups come
together, their MANETs will coalesce, and it will be profitable if also their
content-based information access applications do the same. Now, while merg-
ing physical spatial coordinates requires only updating the co-domain of the
hash function (it may also require large amount of data to be relocated),
merging virtual spaces may require complex algorithms. Despite all these dif-
ficulties, in our future work, we plan to conduct experiments on the overhead
involved in maintaining a virtual space over a MANET.
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8.2 Content-Based Information Access in TOTA

The basic idea of the GHT schema can be easily implemented in terms of field-
based coordination, and in particular by exploiting the services of the TOTA
middleware. Specifically, this involves two key stages: firstly, agents running on
MANET nodes have to set up the proper framework required to support their
interactions, including a coordinate frame and a hashing function; secondly,
they exploit such a framework to actually perform content-based information
access.

8.2.1 Setting up the Framework

When a group of nodes, running autonomous agents, come together forming a
MANET and want a content-based access to shared information, the following
“bootstrap” operations are required:

1. Agents need to self-organize a common coordinate frame and place them-
selves there in a coherent way (neighbor nodes must be nearby). This can
be done by exploiting a sequence of propagation of TOTA tuples that
enable electing a limited number of beacon nodes, and subsequently by
exploiting TOTA tuples that enable all the nodes of the system to trian-
gulate their distances from the beacons.

2. Agents must be provided with a geographic routing algorithm, to be used
to send messages to nodes located at specific points of the coordinate
frame. Specific classes of TOTA tuples can be defined relying on propa-
gation rules that make tuples propagate following specific directions, i.e.,
direct them toward specific coordinates.

3. Agents need to build a common shared hash function that maps shared
information (e.g., file names or strings in general) to specific locations of
the established coordinate frame. This can be achieved by having nodes
agree – by proper exchange of TOTA tuples – on geographical bounds for
the hashing function.

8.2.2 Access to Information

Once the above framework has been established, supporting content-based
information access by GHT is rather trivial. It basically involves interactions
between three types of agents: PubAgents in charge of publishing information,
QueryAgents in charge of looking for information, and AnswerAgents in charge
of responding to other agents’ queries.

4. A PubAgent, willing to publish information, will inject into the network
an Info tuple like the one described in Fig. 8.2. This tuple will have as
content the information being published and a list of keywords describing
the information. The propagation rule of this tuple first applies the hash
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function to the list of keywords to determine where the tuple should finally
go. Then, it applies the geographic routing algorithm it embeds to realize
the actual routing. When the destination node is finally reached, the tuple
just settles (see Subsect. 8.3.4).

5. When a QueryAgent looks for specific information, it injects a Query tuple,
having as content the list of keywords describing the data it is looking for
and also the location of the inquiring node (see Fig. 8.2). This tuple is
routed with the same hash-based mechanism to the only node that could
possibly have the information described by the list of keywords.

6. Upon the receipt of a Query tuple (having the node as its final destina-
tion), an AnswerAgent answers by injecting an Answer tuple (see Fig. 8.2)
having as content “NOT FOUND” if the node does not store an Info tu-
ple having the same keywords as those of the received Query tuple, while
having as content the information contained by the matching Info tuple,
if it is present.

7. The Answer tuple, also created with the location of the inquiring node,
travels across the network to reach the inquiring node.

Info Tuple

C = (information, keywords)

P = (propagate using geographic routing algorithm to the node

closest to coordinates H(keywords))

Query Tuple

C = (keywords, source_location)

P = (propagate using geographic routing algorithm to the node

closest to coordinates H(keywords))

Answer Tuple

C = (information, reply_location)

P = (propagate using geographic routing algorithm to the node

closest to coordinates ‘‘reply_location’’)

Fig. 8.2. Tuples involved in content-based information access

8.3 TOTA Implementation Details

Given the above description, it should be clear that the nontrivial issue for
supporting content-based information access is to set up a proper framework
supporting actual content-based access to information. Once the framework
has been set up correctly, the rest becomes straightforward. To this end, in
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the following, we will focus on how to perform the initial steps so as to provide
a flexible and robust ground for the rest of the application. Specifically, we
are going to deal with (i) How agents actually establish their coordinates. (ii)
How the geographic routing algorithm is actually implemented. (iii) How to
set up the hash function. (iv) What happens upon network reconfigurations
– either due node movements or failures. All of these features are important
and only a correct implementation can produce a truly robust and adaptive
system for content-based information access.

The actual use of the system can then rely on the execution of agents
(PubAgents, QueryAgents, AnswerAgents) that only slightly differ from the
agents already discussed in the previous chapter, for which reason their de-
tailed description will be skipped.

8.3.1 Coordinate Triangulation

The first task the agents need to undertake is to create a common shared coor-
dinate system and to located themselves in there. Clearly, this task critically
depends on the information available to the agents. For example, if they are
provided with a GPS device, the task becomes trivial – just read the GPS!
If the agents are provided with a radar-like localization device, providing the
coordinates of only neighbor nodes, the task is easy as well. In fact, an agent
could inject a TOTA Metric or Space tuple in the network and let it create a
global coordinate system (see Subsect. 7.3.2 and Fig. 7.19).

In contrast, if the agents lack of any kind of localization device, the problem
becomes rather difficult and its solution is an exemplary application of self-
organization and coordination. In the latter case, in fact, localization can
rely on the (geometrically intuitive) fact that the position of a point on a
surface can be uniquely determined by measuring its distance from at least
three nonaligned reference points (“beacons”), by a process of “triangulation”
[105]. TOTA makes this process very simple:

1. All the agents start running a particular leader-election algorithm that
elects the node in the middle of the network (i.e., the network barycenter –
or center of gravity). This algorithm takes advantage of the fact that, given
n points in space, their barycenter is the point that minimizes the sum of
the distances to all the n points. Agents, provided with only local (one-
hop) perception of their environment, can measure each other’s distances
by relying on TOTA HopTuples. In fact, an agent receiving a HopTuples
having value n, can roughly infer that the source of the tuple is about at a
distance of n(wireless− link − range). This enables agents to determine
the barycenter using the completely distributed algorithm described in
Fig. 8.3. In the following, to ground the discussion, we will provide a
pseudo-code implementation of the discussed algorithms. Pseudo-code has
been chosen to avoid the verbosity of real code. Converting such pseudo-
code in Java is straightforward using the TOTA primitives.
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2. Once the barycenter has been elected, it injects another HopTuple in the
network. Nodes that do not see any neighbor node having a value of this
HopTuple greater than their own, are on the perimeter of the network (see
code in Fig. 8.4). These nodes will be the beacons in charge of initializing
the coordinate system.

3. Since a node can determine its location by measuring its distance from
at least three nonaligned reference points (“beacons”), by a process of
“triangulation.” Each beacon “arbitrarily” locates (see code on Fig. 8.5) at
specific coordinates. Then it injects a HopTuple, marked with the beacon
coordinates, allowing other devices to estimate their distance from it. After
a number of beacons have propagated their ranging signals, other nodes
can apply a triangulation algorithm to infer their coordinates (see Fig.
8.5).

It is worth noting that, as pointed out in [105], the precision of such a
coordinate system critically depends on the density of the network. However,
for the purpose of enabling content-based access, precision is not so important
and mostly topological relations matter (i.e., nodes neighbor in the network
must be neighbors in the coordinate system). Moreover, according to exper-
iments conducted in [118], the use of a coordinate system built only upon
mere network topological features, can actually improve the performances of
content-based access. Also, since HopTuples are automatically maintained by
the TOTA middleware, the coordinate system remains up-to-date and coher-
ent despite network dynamism. If upon a node movement the topology of the
network changes, the tuples’ maintenance triggers an update in the coordinate
system, making the latter robust and self-healing.

8.3.2 Geographic Routing

Once network nodes are located in a coordinate system, the routing problem
seems to become trivial. A tuple, by adopting a geographic routing algorithm,
could basically take advantage of node locations to move greedily, following
simple Euclidean considerations, to reach, at every hop, a node closer to its
destination (see Fig. 8.6).

More specifically, once injected, a tuple could inspect its local neighbor-
hood looking for the node whose coordinates are closest to its destination
and then migrate there. Unfortunately, the above picture it is too simplistic a
tuple and dead ends (i.e., false minima in the coordinate system) are likely to
arise. These dead ends happen in those situations in which a tuple arrives at a
node, but then does not find any neighbor closer to the intended destination.
In such cases, the tuple should stop acting greedily, travel a bit backward
(thus getting farther from the destination) and look for alternative paths (see
Fig. 8.7).

To overcome this problem, the solution mainly adopted [18, 75, 81] is to
move past the local minima by applying a graph traversing algorithm, to the
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01: // sum of distance evaluated up to now

02: totCount = 0

03: // number of gradients received

04: totGrad = 0

05: // inject tuples to rend variables

06: // visible to neighbors

07: tota.inject(new Tuple("count", totCount))

08: tota.inject(new Tuple("tot",totGrad))

09: // inject distance tuple

10: tota.inject(new HopTuple(uniqueNumber))

11: Vector readV = tota.read(new HopTuple())

12: if readV.size() != totGrad

13: totGrad = readV.size()

14: tota.inject(new Tuple("tot", totGrad))

15: go to 11

16: else

17: // read other totGrad

18: Tuple otherTotGrad = new Tuple("tot")

19: Vector ot = tota.readOneHop(othetTotGrad)

20: for every i in ot

21: if totGradient!=ot[i].totGrad

22: go to 11

23: end if

24: end for

25: end if

26: // Have received all the gradients

27: totCount = sumOfGradientsValue(readV)

28: for every node in neighbor

29: if neighborTotCount < totCount

30: return NOT_BARYCENTER

31: end if

32: end for

33: return BARYCENTER

Fig. 8.3. Barycenter election

planar graph [42] obtained by locally pruning links in the network. The idea
is the one depicted, in more detail, in Fig. 8.8 and described in the following:

1. Tuples start propagating following plain Euclidean considerations. How-
ever, when a tuple finds itself at a minimum of the coordinate system, it
switches to a, let us call it, “circumnavigate” propagation mode.

2. Since most graph traversing algorithms works only in planar graphs, the
first thing a tuple has to do is to prune (i.e., avoid using) some of the
network links in the host node neighborhood. This can be easily done by
enforcing a planarization algorithm as proposed in [18, 75]. This locally
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01: HopTuple g = new HopTuple(CENTER)

02: if node == BARYCENTER

03: tota.inject(g)

04: end if

05: // compare my gradient value with

06: // neighbors one

07: LOCAL_VAL = tota.read(g)

08: N_VAL[] = tota.readOneHop(g)

09: if(VAL > max(N_VAL[]))

10: return PERIMETER_NODE

11: else

12: return INNER_NODE

13: end if

Fig. 8.4. Perimeter election

01: // each beacon injects a gradient

02: // identified by a random number

03: if node == PERIMETER_NODE

04: id = castRandomNumber()

05: HopTuple g = new HopTuple(id)

06: tota.inject(g)

07: // beacons locate themselves on the

08: // coordinate system, starting from

09: // the one the cast the lower value

10: Vector v = tota.readOneHop(g)

11: val = getMinValue(v)

12: if(val == id)

13: tota.delete(g)

14: MY_COORD = triangulate()

15: tota.inject(new HopTuple(MY_COORD)

16: end if

17: end if

18 // main triangulation

19: v = tota.read(new HopTuple(COORD))

20: MY_COORD = triangulate(v)

Fig. 8.5. Core localization
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public class GreedyEuclideanTuple extends MessageTuple {

public int destX, destY; // x,y intended destination

public int currX, currY; // x,y current location

public GreedyEuclideanTuple(int x, int y) {

destX = x;

destY = y;

/* each node stores its coordinate in a LocTuple.

LocTuple can be created by subclassing TOTA Metric

and Space tuples */

LocTuple loc = tota.keyrd(new LocTuple());

currX = loc.x;

currY = loc.y;

}

public boolean decideEnter() {

super.decideEnter();

// get the location of the visited node

LocTuple loc = tota.keyrd(new LocTuple());

int newX = loc.x;

int newY = loc.y;

// previous distance from the destination

int oldd = (curX - destX) * (curX - destX) +

(curY - destY) * (curY - destY);

// new distance from the destination

int newd = (newX - destX) * (newX - destX) +

(newY - destY) * (newY - destY);

if(newd < oldd) {

currX = newX;

currY = newY;

return true;

}

else

return false;

}}

Fig. 8.6. A GreedyEuclideanTuple is a tuple that moves, at every hop – following
simple geometrical considerations – to a node closer to its intended destination

transform the MANET in a planar network, and logically divides the
network into a set of adjacent “faces.”

3. Suppose now that the tuple wants to travel from a vertex s to a vertex t
of the network in Fig. 8.8(c). First it needs to calculate the line segment
st joining s to t. Then it navigates across the face crossed by st. The
tuple can navigate across a face, provided with only local information, by
always choosing the leftmost link from the direction from which it comes
(right-hand rule [18, 75, 81]).
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B

A

Fig. 8.7. The routing between nodes A and B cannot follow simple Euclidean
consideration. Packets need to circumnavigate the network to reach their destination.

4. The above step is repeated either until no other faces, crossing st, can be
found or until the tuple can revert to the Euclidean routing propagation
(this propagation mode is only intended for escape from a dead end).

5. In the end, once the tuple reaches the last face (F3 in Fig. 8.8), it routes
to the node of that face closest to t. Further details on this algorithm are
in [18, 75, 81].

It is worth noting that, in this implementation, the route to the destina-
tion is computed dynamically as the tuple travels across the network. In fact,
the route derives actually from the hop-by-hop execution of the tuples’ prop-
agation algorithm. This implies that if, during propagation, the underlying
coordinate system changes, then the tuple takes into account such a new co-
ordinate system on the fly (i.e., at the next propagation hop). Given that, the
self-healing properties of this routing algorithm derive from the underlying
adaptive coordinate system. If because of network dynamism the topology of
the network changes, then the established coordinate system will change to
account for the new topology, and the routing algorithm will be automati-
cally retuned to the new situation, even for those tuples that were already in
transit.

8.3.3 Hash Function Construction

Given the above coordinate system and the geographic routing mechanism,
nodes can easily send messages to anywhere in the network. To enable content-
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(a) (b)

F0
F1

F2

F4

F3

(c)

s
t

Fig. 8.8. (a) Original MANET; (b) Planarized MANET; (c) Right-hand routing

based information access, they need a mechanism (hash function) to map
strings (i.e., keywords) into network locations. Independently of how the hash
function is built, it is fundamental that nodes agree on a plausible co-domain
for that hash function. This co-domain must represent roughly the range of
coordinates covered by the network, so that any given string will be hashed
to a point near an arbitrary network node. To this purpose, nodes can con-
veniently exploit the following algorithm (see code in Fig. 8.9) to determine
a bounding box for the whole network exploiting only local information. It is
worth noting that small errors in this algorithm just produce small imbalances
in the way information is spread across the network, without undermining the
application. This is because, if the hash function co-domain is slightly mis-
placed with respect to the network’s actual distribution, there will be nodes
(especially the ones at the border of the network) assigned to larger portions
of the coordinate frame. However, this algorithm could also be placed “into
the loop”, i.e., executed iteratively upon a change in the underlying coordinate
system.

8.3.4 Dealing with Network Reconfigurations

Although the majority of problems related to possible network reconfigura-
tions are dealt with the self-healing properties of the coordinate system, a last
fundamental step is required. Info tuples (see Fig. 8.2) must always remain
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01: Point here = getLocation()

02: Point[] neigh = getNeighLocation()

03: if isNOTInBoundingBox(here,neigh)

04: // perimeter node

05: tota.inject(new FloodTuple(here))

06: end if

07: Vector v = null

08: while(v = tota.read(new FloodTuple())

09: // network bounding box is computed by

10: // considering the greatest and the

11: // lowest coordinates being received

12: netBBox = computeNetworkBBox(v)

13: end while

14: setupHash(netBBox)

Fig. 8.9. Algorithm to set up the parameters of the hash function

active and ready to migrate again, if upon node movements, there appears a
node closer to the tuple’s intended final destination. In fact, if another node
becomes closer to the tuple destination, the self-healing geographic routing
will send queries for the tuple to that node. Now, if the Info tuple has not
migrated, the node will answer incorrectly that the information required is
not available since it is in charge for the information hashed in that loca-
tion, but does not store the corresponding Info tuple. To this end, Info tuples
will contain also the code making the required migration happen automati-
cally, as soon as a node closer to their intended destination appears in the
neighborhood.

8.4 Concluding Remarks

In this chapter we presented a possible implementation of content-based rout-
ing based on TOTA. We emphasize that our goal was not to present new
techniques, but to show that the TOTA middleware is capable of dealing
with and supporting even this kind of complex application.

Still, we think it is fair to briefly review those other approaches that can
enable content-based routing. These could possibly serve both as a benchmark
to performance evaluation and as a source of ideas to eventually refine our
application.

A number of recent proposals address the problem of defining content-
based interaction mechanisms in mobile and P2P computing scenarios. Most
of the proposals introduce novel “overlay network” architectures, and define
the specific algorithms for building such networks, reorganizing them in re-
sponse to dynamic network changes, and routing data and requests across
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them. Most of these proposals focus on the problem of Internet-scale peer-to-
peer routing (e.g., CAN [120] and Pastry [129]), and others on more specific
P2P scenarios (e.g., GHT [119] and [118]). However, to the best of our knowl-
edge, none of these proposals provide a configurable framework with which to
define and customize the structure of the overlay network and the associated
policy. TOTA can provide this feature by a simple and intuitive programming
model, and can make it possible to define, say, libraries of tuples with which
to implement any needed content-based policy for data and service access.

Smart Messages (SMs) [17], rooted in the area of active networks, is an
architecture for computation and communication in large networks of embed-
ded devices. Communication is realized by sending “smart messages” in the
network, i.e., messages which include code to be executed at each hop in the
network path. SM shares with TOTA the general idea of putting intelligence in
the network by letting messages (or tuples) execute, hop-by-hop, small chunks
of code to determine their propagation. The main difference between SM and
TOTA is that in SM messages tend to be used as lightweight mobile agents,
roaming across the network, and performing different tasks. In TOTA, tu-
ples are mainly passive entities that tend to form self-maintained distributed
data structures guiding other agents in their task. Content-based routing had
been realized in SM, with some restrictive hypotheses: nodes are provided
with a GPS device providing absolute coordinates, and the network topology
is assumed to be free from dead ends, making routing based on Euclidean
considerations always effective.

The research projects Anthill [3] and SwarmLinda [98] both use algorithms
based on distributed data structures spread in the network by mobile software
agents to enable file sharing in Internet-scale peer-to-peer applications. Agents
spread the data structure as they randomly move across the network. As a
result, paths are created between peers that share similar files, thus enabling
a fast content-based navigation in the network of peers. Although, to the best
of our knowledge, content-based routing has not been implemented in such
systems, the trails laid down by the agents could be used to realize content-
based access to information.

In conclusion of this chapter, we think that field-based coordination and
the TOTA middleware represent suitable models and tools to deal with
content-based information access. This is not the full story: content-based
access is just an example of a larger class of applications in which agents’
interactions are decoupled by making use of spatial abstractions. Our feeling
is that the field-based approach and TOTA can be applied successfully in
several of these spatial applications [94].
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Self-Assembly in Mobile and Modular Robots

In this chapter, we put TOTA at work in a totally different application area,
i.e., self-assembly robotics. In particular, we intend to show how field-based
coordination – as supported by TOTA – can be effectively exploited for or-
chestrating spatial movements in two different robotics scenarios:

1. a swarm of simple mobile computational particles (i.e., minimal robots),
that need to coordinate their independent movements in space so as to
have the swarm as a whole assume a specific global shape (e.g., recall the
pipe-repairing spray application in Subsect. 2.1.1, or the T1000 robot in
the Terminator 2 movie);

2. a modular robot, made up of interconnected autonomous computer-based
components (i.e., actuators), connected to each other with joints provid-
ing a limited degree of freedom in movements. The components need to
coordinate the way in which the joints are bent so as to let the modu-
lar robot assume specific shapes and flexibly reshape to enforce a specific
motion gait (recall Subsect. 4.2.2).

The above two scenarios are representative of the fundamental questions
at the very basis of this book: (i) how does one engineer robust coordinated
behaviors in a system made up of a large number of components that are
interconnected in local, irregular, and time-varying ways? (ii) How does one
translate prespecified global goals (e.g., global shapes or global motion gait)
into the local interactions of vast numbers of parts (e.g., individual particle
movements or bending of single joints)?

Earlier in this book (Chap. 4) we have already anticipated how biologi-
cally inspired mechanisms such as morphogen gradients and hormones (both
of which can be assimilated to fields) can be effectively exploited for that pur-
pose. Here, morphogen gradients and hormones will be translated into TOTA
tuples to be applied for enabling adaptive self-organization of spatial shapes
in swarms of simple particles and of gait control in modular robots.
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9.1 Shape Formation in Swarms of Mobile Autonomous
Robots

The first application scenario we are going to consider is self-assembly of
spatial shapes (or “morphogenesis”) in swarms of very simple computational
particles, i.e., mobile robots with minimal capabilities [89]. The assumption
of minimal capabilities, while possibly simplifying the future implementation
of such robots (we consider simulated scenarios only), is also finalized by
making the goal more challenging: having a swarm assume a specific spatial
shape cannot rely on any sophisticated feature of robots, but must necessarily
rely on the power of the adopted interaction model.

In the rest of this section, we firstly characterize our approach in detail,
also in comparison with related approaches. Then, we report a number of
experiments about a number of spatial shapes we have been able to enforce
in a self-organized way with the use of field-based coordination and TOTA.

9.1.1 Our Approach

To be compliant with foreseeable future nanotechnology scenarios, other than
with a more challenging scenario, we focus on swarms in which robots have
very minimal capabilities. Specifically, we assume that

1. Robots are autonomous (i.e., have a separate thread of execution and
control) and equally programmed (i.e., they run the same code). Differ-
entiation in their activities – if needed – must be established at runtime.

2. Each robot is provided with a random number generator enabling sym-
metry breaking and robot identification (with high probability; e.g., cast
ten random numbers and let them be the robot id).

3. Robots can freely move on a 2-D plane, even walking through each other.
This hypothesis relies on the fact that, in this scenario, we disregard
low-level motion details. Robots’ movement, depending on the specific
hardware, will be realized with various mechanisms (e.g., wheeled robots,
robots moving by exploiting their direct contact [133], etc.).

4. Robots interact by wireless connections. Each robot is provided with a
short-range wireless communication device enabling the robot to broad-
cast messages in its neighborhood and to receive messages sent by other
robots. This allows each robot to know how many other robots are in
its neighborhood (e.g., every robot periodically broadcasts “I am here”
messages to be received by neighbor robots).

5. Robots do not have other capabilities other than the ones listed above.
In particular, they do not perceive the location (neither direction nor
distance) of other robots’, they do not have any kind long-range commu-
nication mechanism, nor can rely on a global accessible data space or base
station.
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From a methodology point of view, we will focus on robots exploiting
TOTA to self-organize their respective positions. Each robot will be provided
with a local TOTA middleware to act as a TOTA node. By exploiting the
TOTA middleware and their wireless network, robots constitute the TOTA
network. Robots will iteratively propagate and sense TOTA tuples represent-
ing morphogen fields, and then will move according to the tuples they locally
sense. Specifically, in our approach the tuples being propagated will repre-
sent a “constructive” description of the shape we want to obtain. Complex
shapes will be obtained by robots incrementally deploying tuples and moving
to intermediate positions.

9.1.2 Related Approaches

In the last few years, several approaches and algorithms for shape formation in
robot swarms have been proposed. However, these approaches either assume
more sophisticated capabilities for robots or have to adopt more complicated
solutions to achieve what we are able to achieve in a simple way with TOTA.

One of the first approaches proposed about formation of a shape using
autonomous mobile robots is [142]. In this work, several algorithms have been
proposed to form shapes like circles and polygons with robots that are able
to determine the positions of all the other robots, without any kind of com-
munication, but by only observing other robot positions and movements. In
our opinion, these hypotheses are not applicable to micro or nanorobots in
that scalability, battery consumption, line of sight problems, cost of global
localization, etc., all call for a strictly local and simpler perception of the
environment.

A similar approach is presented in [151], where robots are able to detect
signals from other robots in a limited area, and to compute the distance and
direction of the signal sources. Shapes like a 2D circle or a 3D cone can be
obtained using one or more fixed signal sources, called beacons, and by having
robots move away from or toward beacons. In our approach, and in stark
contrast with most of the others, robots are not able to compute distance and
direction of the signal sources. This is justified by the idea that it will not be
easy to provide nanorobots with complex radar-like devices.

In [38] robots only use local sensing and do not share a common coordi-
nate system. Every robot is provided with an unique ID that is broadcasted
at regular time intervals. Other robots can detect this signal and also infer
from the signal itself the relative location of the source. Different formations
are specified by forcing each robot to maintain a certain angle and distance
from others. Specifically, robots can create formations like lines, columns, dia-
monds, and wedges and pass from one formation to another dynamically. The
algorithm has been simulated and also implemented on real robots. However,
this approach also requires robots to acquire a detailed knowledge about the
location of nearby robots.
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The method proposed in [47] relies on the creation of a shared coordinate
system over a robot network. This is motivated by the fact that, once pro-
vided with a shared coordinate system, robots can easily assume any kind of
spatial configuration, expressed by means of the coordinates of the points to
be reached. Each robot lives in a 2D grid and sees the locations of all other
robots with respect to its own private coordinate system. Starting from an
arbitrary initial configuration in which the robots occupy distinct points, all
the robots will meet at a certain location. Robots elect that location as the
origin of a common shared coordinate system. Then, the robots will perform
a series of voting procedures to agree on direction and orientation of each
axis. This process is very interesting, and a comparison with this idea will be
treated separately in the next subsection.

In [71] a method is presented to organize the growth of a 2D structure
in a swarm of mobile robots. Robots are autonomous, can only sense their
local environment, and are largely interchangeable. Each robot is defined by a
state value and a lookup table of transition rules. A transition rule specifies a
condition under which a robot will connect itself to one of its neighbor robots.
Connections, as prescribed by the lookup table, take place on the basis of a
robot’s internal state. Robots move randomly in a 2D square lattice around
an initial robot, called seed, and when the conditions of a transition rule are
met they attach themselves to neighbor robots.

A similar approach is proposed in [25], where robots build a 3D structure
using building blocks of different types and following building rules. Robots
move randomly in a 3D lattice around an initial building block. They can sense
the presence of building blocks or other robots within the local 3x3x3 lattice.
When a robot finds a building block, it can pick it up and carry it toward
the growing structure. Then, if the robot perceives a suitable environmental
configuration (a match in its building rules), it deposits the block, making the
structure grow.

These two approaches are very close in spirit to the one we propose, and
future investigation on their potential integration is on our research agenda.
However, our perception is that, relying only on strict local rules without
the possibility of mediated multi-hop, long-range interactions – like the ones
enabled by TOTA tuples – severely constrains the kind of patterns that can
be achieved and the possibility to engineer such patterns.

The approach presented in [135] enables robots to create regular spatial
distributions like hexagonal and square lattices. Each robot is like a particle
with a mass and it is subject to “artificial physical” forces enabling robots,
detecting only nearby robots’ distances, to spread in the space, creating regu-
lar lattices. This approach is clearly a field-based one and, thus, it is strongly
related to ours. However, it misses identifying the possibility of shaping more
complex fields than simple gravitational-like fields, thus limiting the variety
of spatial patterns they are able to enforce in a robot swarm.

The approach proposed in the Amorphous Computing project [102], for
the self-organization of spatial patterns in a smart paper made up of a mul-
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titude of simple computational particles, is the one more directly related to
our approach. There, particles capable of communicating only with their lo-
cal neighborhood, can shape 2D patterns on the paper by having particles
propagate field-like data structures and by changing their internal state on
the basis of the locally sensed fields. The main differences from our approach
are that particles cannot move on the paper (a spatial shape is determined by
the spatial distribution of particles in a given state and not by the movement
of particles), and that particles can initially know in which part of the paper
(a corner, a side, etc.) they are located.

9.1.3 A Possible Objection

Algorithms to create a shared coordinate system on a network of mobile de-
vices on the basis of mere network connectivity information have only been
recently proposed [103, 105]. Moreover, as discussed in the previous chapter,
they can be rather easily implemented with the TOTA middleware. So, a ques-
tion arises: since a swarm of mobile robot can be assimilated to a MANET,
why not build a shared coordinate system for the swarm, and use it to direct
robots in the forming of a specific spatial shape?

Something similar has indeed been done in other proposal [103, 141], and
it is in principle straightforward to implement:

1. Robots can be provided with an f(x, y)-like description of the 2D shape
to form;

2. They can set up a shared coordinate system;
3. Then, they can move to the closest (x,y) within the shape and attempt to

stay – within the shape – as far as possible from each other (to gracefully
fill the shape).

Although this approach would allow us to build any kind of shape with
great accuracy, we disregard it for the following reasons:

1. Building a coordinate system from mere connectivity requires a highly
dense network of nodes (something like 15 other nodes in each node’s
wireless communication range). Lower densities can cause an exponential
loss of precision in the coordinate system and, thus, in the formation of
the shape, since such a density for robots cannot be guaranteed in every
application scenario and in every area of a network.

2. Upon nodes’ movement, the coordinate system should be rebuilt every
time. In some MANET scenarios the movements of nodes can be occa-
sional or slow, thus making feasible the continuous update of the coor-
dinate system by, e.g., TOTA self-maintenance of tuples. However, when
the very application goal is to move the components of a MANET (i.e.,
of the robots in a swarm), having to rely on a continuous update of a
shared coordinate system may impose too much overhead, and it is likely
to saturate the robots’ available bandwidth.
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3. Coding a complex shape in an f(x, y)-like representation can turn out
to be really difficult, and likely to require notable memory for robots to
locally store it.

Given that, we decided to avoid relying on a shared coordinate system
and have robots self-organize a global spatial shape only with the proper
propagation and sensing of different types of TOTA tuples.

9.1.4 Experiments

Here we present a variety of exemplary spatial patterns that we have been
able to obtain by self-organization with the use of TOTA tuples implementing
fields. All the experiments have been performed by using the TOTA emulator
described in Chap. 7.

Center of Gravity

In this example, robots run a distributed field-based algorithm to coopera-
tively identify the robot closest to the barycenter (i.e., center of gravity) of
the swarm. Such a kind of algorithm has been already presented in the previ-
ous chapter, since it is also used for establishing the shared coordinate system
used for content-based information access. However, given its importance in
this scenario also, we present it again, in more detail.

Electing a barycenter is a kind of leader-election algorithm. Specifically,
given n points in space, their barycenter is the point that minimizes the sum
of the distances to all the n points. Agents, provided with only local (one-hop)
perception of their environment, can measure each other’s distance by relying
on a TOTA HopTuple. In fact, an agent receiving a HopTuple having value
n, can roughly infer that the source of the tuple is at a distance of about
n · (wireless − link − range).

More in detail, each robot propagates a TOTA HopTuple. Each robot
senses the TOTA HopTuple propagated by all the other robots and adds their
values together; let us call the resulting value B. B is the sum of distances to
all the other robots, so the robot having the minimum B is the barycenter.
Since B decreases monotonically to the barycenter, each robot can understand
whether it has B as minimum or not, by simply comparing its value of B with
that of the neighbor robots. If no neighbor has a lower value, the robot is the
barycenter.

The pseudo-code implementing this algorithm with TOTA is in Fig. 8.3.
Some snapshots of robots achieving this task in our simulator are in Fig. 9.1.

Circle

In this example, robots run a distributed algorithm to cooperatively assume
a circular shape. The algorithm is indeed very simple.
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Fig. 9.1. From t0 to t5, different stages in the discovery of the barycenter. It is
worth noting that, because of tuple propagation delays, more that one barycenter
can arise during the process. However, after some time, the algorithm converges and
only one barycenter is elected

First, each robot has to run the barycenter algorithm described above.
The resulting barycenter robot (call it the CENTER) will serve as the circle
center. The CENTER propagates a TOTA HopTuple named CIRCLE. All
the other robots sense the CIRCLE tuple, and if they sense a value greater
than R (the intended radius of the circle to be obtained) they move following
downhill the CIRCLE tuple.

A question may arise with regard to this algorithm: how can simple robots
that cannot have any location information properly move following the CIR-
CLE tuple downhill? In fact, a robot can receive the information that there is
another robot in its neighborhood having a CIRCLE tuple with a local value



182 9 Self-Assembly in Mobile and Modular Robots

lower than its own. However, such information appears to be useless if the
robot does not know how to reach that robot: since it cannot know in which
direction that robot is, every direction being equally plausible. The solution
to this problem is to have the robot randomly choose a direction to be fol-
lowed. The direction will be eventually inverted if the robot finds out that the
gradient is not actually decreasing, i.e., that the guess is wrong.

However, it is fair to report that it is possible that some robots get lost in
this process. This happens if upon a wrong guess the robot gets disconnected
from the rest of the network. At this point the robot is left without any
information about where the rest of the world is! Here the robot can try
to invert the direction to reconnect with the network. But if this does not
happen because the other robots have moved away, the robot is lost and is
left wandering randomly. However, these unfortunate events turned out to be
extremely rare in our experiments.

The pseudo-code implementing the circle algorithm with TOTA is in Fig.
9.2. Some snapshots of robots achieving this task in our simulator are in Fig.
9.3.

01: HopTuple c = new HopTuple(CIRCLE)

02: if robot == CENTER

03: tota.inject(c)

04: end if

05: Vector v = tota.read(c)

06: c = (HopTuple)v.get(0);

07: if c.hop > R

08: Vector w = tota.readOneHop(c)

09: HopTuple min = getMinimum(w)

10: followDownhill(min)

11: go to 05

12: else if c.hop == R

13: moveAwayFromCrowd()

14: go to 05

15: end if

16: end if

Fig. 9.2. Circle shape: pseudo-code

Ring

In this example, robots run a distributed algorithm to cooperatively assume
a ring shape.

This algorithm is very similar to the circle one. Once the circle has been
formed, robots that find themselves on the perimeter of the circle (i.e., that
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Fig. 9.3. From t0 to t5, different stages of the circle formation
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perceive a value R for the value of the CIRCLE tuple), start propagating a
TOTA HopTuple named RING. This TOTA HopTuple attracts robots to the
middle of the circle, creating the void inside the ring. Specifically, if a robot
senses the RING tuple with a value greater than T (the intended thickness of
the ring to be formed), it starts following the RING tuple downhill.

The pseudo-code implementing this algorithm in TOTA is in Fig. 9.4.
Some snapshots of robots achieving this task in our simulator are in Fig. 9.5.

01: HopTuple c = new HopTuple(CIRCLE)

02: HopTuple r = new HopTuple(RING)

03: if robot == CENTER

04: tota.inject(c)

05: end if

06: Vector v = tota.read(c)

07: c = (HopTuple)v.get(0);

08: if c.hop == R

09: tota.inject(r)

10: return

11: else if c.hop != R

12: Vector w = tota.read(r)

13: if w.size == 0

14: goto 12

15: endif

16: r = (HopTuple)w.get(0)

17: while r.hop >= T

18: Vector neigh = tota.readOneHop(c)

19: HopTuple min = getMinimum(neigh)

20: followDownhill(min)

21: end while

22: end if

23: end if

Fig. 9.4. Ring shape: pseudo-code

Making Lobes

In this experiment, we tried to break the circular symmetry of previous ex-
periments and let irregular shapes with lobes emerge in the swarm.

The idea to create lobes is to apply the circle algorithm and to identify
a mechanism to deform the circle. To this end, it is worth noting that in
the circle algorithm a circle is created because the TOTA HopTuple CIRCLE
spreads in every direction uniformly, i.e., it increases its value by one at each
and every hop, in all directions along which it is propagated. In this way, all
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Fig. 9.5. From t0 to t5, different stages of the ring formation
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the robots sensing a value of R for this tuple are almost equidistant from the
center.

What if, in certain regions of the swarm, the value of the CIRCLE tuple
would increase slower? Of course, the tuple would reach the value R farther
from the source. Consequently, those robots perceiving that tuple and trying
to dispose themselves in a position in which the tuple has a value R, would
not end up in the actual perimeter of the circle: a lobe would be formed in
those regions of the swarm where the tuple has increased more slowly and
where it has reached the value of R farther from the center.

A possible idea to identify regions in which to make lobes emerge is to have
robots sense how many robots they have in the neighborhood (something that
even our very minimal robots can do, by perceiving from how many robots
they can receive a signal). This can be used to identify the density of robots
in a region, and to have lobes emerge in the denser regions. In particular, if a
robot perceives a local number of neighbors (i.e., a local density) exceeding a
specified threshold, that robot forwards the CIRCLE tuple without increasing
its value. This let the CIRCLE tuple increase slower and thus the lobe to
appear. Of course, it may not be possible to identify a priori where such
lobes will appear, because this depends on the initial configuration of robots:
even a small imbalance in the initial density of nodes, amplified as nodes get
attracted to the circle, can lead to the emergence of a lobe in a specific region.

The pseudo-code implementing this algorithm in TOTA is in Fig. 9.6.
Some snapshots of robots achieving this task in our simulator are in Fig. 9.7.

Shapes With Multiple Lobes – Polygons

In this set of experiments, we built on the previous one and tried to control the
number and position of lobes to be created, so as to obtain regular polygon-like
shapes (e.g., three lobes for a triangle-like shape, four lobes for a square-like
shape, etc.).

The idea to control the number of lobes is again rooted in a leader-election
mechanism. We want to design an algorithm to elect n leaders on a circle.
These leaders must be equidistant from one another. Once this has been ac-
complished, the leaders can execute the lobe algorithm described in the pre-
vious section (i.e., propagating the CIRCLE tuple without increasing it), to
create n lobes equidistant from one another.

The idea for the leader-election algorithm is very simple: (i) each node runs
the circle algorithm; (ii) once a circle has been created nodes on the perimeter
start casting random numbers; (iii) each node casting a number greater than a
specified threshold becomes a leader – the threshold is chosen so that it is very
unlikely that two nodes becomes leaders shortly one after another; (iv) the
leader starts propagating a TOTA HopTuple named ELECT, that propagates
only in the circle perimeter region; (v) nodes receiving the ELECT tuple stop
casting random numbers, and if the received ELECT tuple value overcomes
another specified threshold L, they become leaders; (vi) each leader sets the
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01: HopTuple c = new HopTuple(CIRCLE)

02: if robot == CENTER

03: tota.inject(c)

04: end if

05: value = getTupleValue(CIRCLE)

06: if value > R

07: followDownhillTuple(CIRCLE)

08: else if value == R

09: moveAwayFromCrowd()

10: end if

11: else

12: followUphillTuple(CIRCLE)

13: end if

14: if numNeighbours() > criticalDensity1

15: /* do not increase the field upon tuple propagation-forwarding */

16: setTupleIncValue(CIRCLE, 0)

17: end if

18: if numNeighbours() < criticalDensity2

19: /* restore default increase upon tuple propagation-forwarding */

20: setTupleIncValue(CIRCLE, def)

21: end if

Fig. 9.6. Shape with lobes: pseudo-code

ELECT tuple value to 0 and continues its propagation; and (vii) once the
ELECT tuple is fully propagated there should be almost (circle − length)/L
equidistant leaders on the circle. Thus L is a parameter controlling which
polygon will emerge.

The pseudo-code implementing this algorithm in TOTA is in Fig. 9.8.
Some snapshots of robots achieving this task in our simulator are in Fig. 9.9.

9.1.5 Performance Evaluation

Validating our approach in terms of performance basically amounts to verify-
ing (i) that it is reasonably scalable and (ii) that the assumption of minimal
capabilities is not too penalizing. The results are presented in Fig. 9.10 and
refer to a virtual time that adopts as unity ‘1’ the time taken to propagate
a gradient between neighbor robots. Referring to an actual time requires as-
sumptions on hardware and motion speed that are not relevant here. With
regard to point (i), we have verified that our approach scales linearly with the
number of robots: the time for a swarm of randomly placed robots to reach a
stable configuration increases linearly with the number of robots. With regard
to point (ii) we have limited our attention to verifying that the impact of the
assumption of nondirectional sensing is not too penalizing. We have compared
the time required by robots to self-organize into specific shapes with and with-
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Fig. 9.7. From t0 to t5, different stages of the circle with lobes formation
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01: if robot == CENTER

02: injectTuple(CIRCLE, 10)

03: end if

04: if getTupleValue(CIRCLE) == R

05: if hasTuple(ELECT)

06: if getTupleValue(ELECT) > dist

07: iAmLeader();

08: injectTuple(ELECT)

09: setTupleIncValue(CIRCLE, 0)

10: end if

11: else if nextRandom() > threshold

12: iAmLeader();

13: injectTuple(ELECT)

14: setTupleIncValue(CIRCLE,0)

15: else

16: go to 04

17: end if

18: end if

19: else if getTupleValue(CIRCLE) > R

20: if getTupleValue(ELECT) == 1

21: setTupleIncValue(CIRCLE, 0)

22: end if

23: end if

24: end if

25:

26: value = getTupleValue(CIRCLE)

27: if value > R

28: followDownhillTuple(CIRCLE)

29: else if value == R

30: moveAwatFromCrowd ()

31: end if

32: go to 26

Fig. 9.8. Polygons: pseudo-code

out the capability to perceive the direction in which a morphogen gradient is
decreasing. The result is that the overhead caused by robots wandering ran-
domly to properly detect in which direction to go is very limited, independent
of the specific shape to be obtained and independent of the overall number of
robots in the system. Comparing our approach with other approaches based on
robots with more powerful capabilities (i.e., global sensing and a priori knowl-
edge of the geometrical shape to obtain) is simply meaningless. In fact, the
notably better performances that these approaches would obviously exhibit
would be obtained at the price of notably increasing the robots’ complexity,
size and price.
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a) b)

c) d)

Fig. 9.9. Different polygon shapes obtained by multiple lobes: (a) Triangle; (b)
Quadrilateral; (c) Pentagon; (d) Hexagon

9.1.6 Open Issues

The above experiments have shown the power of field-based coordination and
of TOTA in supporting self-organizing shape formation in swarms of simple
mobile robots. We are aware that the spatial shapes we have presented are
indeed simple. Nevertheless, they represent the basic starting point from which
to compose more complex manifolds involving circles, polygons, areas with
holes (as in the circle), areas in which irregular features emerge (as in the
lobes).

Unfortunately, effective methodologies to support developers in under-
standing what fields (i.e., what TOTA tuples) one must exploit and how to
achieve such complex composite spatial shapes are still to be fully identified –
see also Subsect. 5.3.6. However, as already stated in Chap. 7, this is a general
open issue of field-based coordination and of adaptive self-organizing systems.

A specific issue of robot swarms worth investigating relates instead to the
understanding of how the integration of additional capabilities in robots (e.g.,
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Fig. 9.10. Performance evaluation. (a) Identification of the barycenter. The time
required to elect a barycenter grows linearly with the number of robots. (b) Ring
formation. The time required for the shaping of robots into a ring grows linearly
with the number of robots. Furthermore, the assumption of nondirectional sensing
is not highly penalizing, if compared with the results achieved by robots capable of
directional sensing
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direction and distance sensing) could be exploited to its best in the context
of field-based coordination.

9.2 Gait Control in Modular Robots

The second, somewhat related, scenario we have considered to evaluate the
effectiveness of field-based coordination and of TOTA, is modular robots con-
trol.

As already introduced in Subsect. 4.2.2, a modular robot is a collection
of simple autonomous actuators connected with each other, with few degrees
of freedom in their relative movements. The key problem in the control of a
modular robot is to design distributed control algorithms to be executed by
the actuators that – interacting with each other and changing their relative
positions – have to have the robot assume global coherent shapes or global
coherent motion patterns (see Fig. 9.11).

Fig. 9.11. Modular Robot: a robot adopting a caterpillar gait to climb a porous
material. Photo taken from [159]

Some of the most innovative approaches to control a modular robot (al-
ready discussed in Subsect. 4.2.2) adopt the biologically inspired idea of hor-
mones [133]. Hormone signals are actually sort of field-like messages, spread
across the robot and triggering the individual actuator’s bending. For exam-
ple, a “head” module in a modular robot (see later) can inject in the robot
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a sequence of hormone signals. All the other modules can be programmed to
react to the income of such signals by bending their actuator by a specified
angle. A motion gait would be encoded by means of a specific sequence of hor-
mones to be injected in the robot and by means of specific reactions triggered
by these hormones, changing the bending angles.

In our experiments, we have (successfully) tried to implement hormones
in terms of TOTA tuples. To perform these experiments, we connected our
TOTA simulator with a simulator for 3D modular robots available at [99]. This
program can simulate the behavior of various types of modular robots, taking
into account both the characteristics of the joints connecting different parts
of the robot and the physical forces acting on the robot (e.g., gravitation),
and offers a 3D view of the robot’s actual configuration and movements.

Distributed algorithms to control the robot can be implemented with this
simulator. Specifically, each module of the robot is provided with an API
enabling us to drive the module actuator, and to sample and possibly change
the way in which the robot is connected to the other modules.

To connect this simulator with the TOTA one, we created an object having
access both to the TOTA API and to the modular robot API. This object
“runs,” at the same time, in the TOTA simulator and in the modular robot
simulator, connecting the two.

9.2.1 Our Approach

The main subject of our research has been the chain-type modular robot
(although we later report also about an experiment with a “legged” robot).
In our experiments, we assumed that the robot is composed of very simple
equal modules (i.e., joint actuators). Each module has a “front” side and a
“back” side. On each side there are two docking points and an infrared (IR)
network link. The two docking points enable a module to physically connect
with other ones. This is of course fundamental to actually building the chain
constituting the modular robot. The IR link enables communication between
connected modules (see Fig. 9.13).

Each module runs the TOTA middleware and an agent in charge of driving
the module joint. In a chain-type modular robot, modules connect by their
IR links in a chain-type network, resembling the robot topology.

An agent, installed on a module, looking at the active IR links, is able to
infer whether it is the “head,” the “tail,” or a part of the “body” of the robot.
Specifically, the “head” agent is the one with only the back IR link active, the
“tail” agent is the one with only the front IR link active, a “body” agent is
one having both the IR links active.

The process of assessing whether an IR link is active or not can be based
on “ping” messages and can be executed iteratively to take into account topo-
logical reconfigurations and module breakdown.
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From a methodology point of view and in very general terms, our setup
consists in codifying a motion gait by means of a GaitTuple TOTA tuple. Such
a tuple has the structure depicted in Fig. 9.12.

Abstract GaitTuple

C = (..., angle)

P = (propagate hop-by-hop, changing the content so as

to encode in the "angle"-distributed data structure

the shape the robot has to assume)

Fig. 9.12. Structure of the abstract GaitTuple. This tuple encodes in its distributed
shape (i.e., angle field values) the form we want the robot to assume

When an agent installed on a module senses the income of a tuple of this
kind, it reacts by bending the module joint by the angle specified in the tuple.
So, for example, if in a robot composed of N modules a tuple having in its
content a fixed angle of about (360/N)◦ is spread, the robot closes into a loop.

More specifically, our approach is based on the following key points.

1. The head agent injects in the network (i.e., in the robot modules) a specific
GaitTuple, representing the shape (or a step of the gait) the robot has to
assume.

2. The tuple propagates from the head to the tail letting the robot bend
accordingly.

3. When the tail receives the tuple, it injects another tuple (a MessageTuple
with constant value) for the purpose of notifying the head that the Gait
Tuple completed its travel.

4. When the head receives the above tuple it can inject another GaitTuple im-
plementing the second configuration the robot has to assume (i.e., second
step in a motion gait). Or, alternatively, the MessageTuple can automat-
ically trigger a change in the content of the GaitTuple to let the robot
assume the second configuration.

5. The process continues iteratively.

9.2.2 Related Approaches

The research on CONRO modular robot [133] (already introduced in Subsect.
4.2.2) directly inspired our experiments. Basically, all we did was to rephrase
their concept of hormone signals in terms of TOTA tuples. To this end, we
emphasize again that our goal, in this scenario, is not to devise new control
mechanisms to drive the modular robot, but to test if the TOTA approach
is general enough to be applied also in this scenario. It is however worth
noting that our approach actually slightly extends the original hormone-based
approach. In [133], hormones are passive (“dead”) data structures, and agents,
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Fig. 9.13. A single module composing the modular robot. In our research we focus
on simple module having just two docking points and two IR network links one for
each side (front and back) of the module.

running on modules, are expected to inject different hormones to achieve, for
example, a complex motion gait. In our approach, TOTA tuples are active and
can change while being stored in the modular robot. Exploiting this feature,
even a complex gait can be obtained by using just one TOTA tuple that
changes to let the robot assume different configurations.

In [13], each module of the modular robot runs a simple finite state au-
tomaton in which state transitions are driven by the local state, the state of
neighbor modules, their locations, and some external information. Commu-
nications are limited to the immediate neighborhood and a limited number
of bits are exchanged at each time step. The goal is not to create an exact
predefined shape, but a structure with the correct properties (structural, mor-
phological, etc.). Any stable “emergent” structure that exhibits the desired
properties is considered satisfactory, with no regard for the “optimality” or
details of the resulting geometry. This approach is very similar to ours, al-
though our goal is to actually create engineered shapes and gaits, and not
just purely emergent ones.

Another thread of research, in modular robots, involves conceptually cen-
tralized control mechanisms [160]. In these approaches, a control table, spec-
ifying how each module must bend its actuator, is compiled off-line and then
uploaded into the modules. The main advantage of this approach is that it
allows us to design even complex motion gaits rather easily. The main draw-
back is that the control table is built for a specific robot configuration, and
if the robot changes (e.g., new modules get connected), the table must be
rebuilt from scratch. The research in this area is mainly oriented to devising
new languages to build the control table. One of the most advanced propos-
als is PARSL (Phase Automata Robot Scripting Language) [99]. PARSL is
a scripting language based on XML syntax, designed to express motion gaits
for chain-type modular robots. In PARSL it is possible to design a motion
gait by means of abstract “waves of activity” traveling across the robot. Such
high-level description is then automatically compiled to create the control
table.
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9.2.3 Experiments

In the rest of this section we will use our approach to create two motion
gaits in a chain-type modular robot: the “caterpillar gait” (that lets the robot
proceed by mimicking the motion of a snake) and the “rolling gait” (that lets
the robot close in a loop, and then roll).

Caterpillar Gait

To implement the caterpillar gait, the head agent starts the movement by
injecting a caterpillar tuple (i.e., a TOTA tuple of the class CaterpillarGait-
Tuple). The general structure of such a tuple is depicted in Fig. 9.14, it prop-
agates across the robot letting it bend accordingly.

Once the tail agent receives the tuple, according to the general description
given above, it injects another tuple to notify the head that a new step is
ready to be executed.

At this point, the head agent updates the Caterpillar GaitTuple accord-
ingly to the Table 9.15 and injects it again. Once spread, this tuple lets the
gait proceed by another step.

Useful insights to understand how the caterpillar gait works and how the
Table 9.15 has been compiled can be found in Fig. 9.16.

The code implementing the CaterpillarGaitTuple tuple can be found in
Fig. 9.17. This process is iterated letting the whole robot move performing
the caterpillar gait (see Fig. 9.18).

CaterpillarGait Tuple

C = (state, angle)

P = (propagate hop-by-hop, storing on intermediate

nodes changing the content accordingly to the table

in Fig. \ref{fig:caterpillar-table}. If on the head node and upon the receipt

of a gait-tuple, re-apply propagation)

Fig. 9.14. The structure of the CaterpillarGaitTuple tuple

Current State New State New Angle

INIT A +45◦

A B +45◦

B C −45◦

C D −45◦

D A +45◦

Fig. 9.15. This table shows how the content of the CaterpillarGaitTuple changes
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Fig. 9.16. The caterpillar gait works by letting a pattern of activity travel along
the robot, letting it going forward

public class CaterpillarGaitTuple extends MessageTuple {

/* constant declaration as in caterpillar gait table */

/* tuple sates: INIT, A,B,C,D and respective angles

degA,degB,degC,degD are defined */

public int state = INIT;

public int angle = 0;

protected void changeTupleContent()

{

switch(state)

{

case INIT : state = A;

angle = degA;

break;

case A : state = B;

angle = degB;

break;

case B : state = C;

angle = degC;

break;

case C : state = D;

angle = degD;

break;

case D : state = A;

angle = degA;

break;

}

}

}

Fig. 9.17. The code realizing the CaterpillarGaitTuple TOTA class
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Fig. 9.18. Some stages of a caterpillar gait, in a chain-typed modular robot, com-
posed of six actuators

Rolling Gait

The idea of this gait is to let the robot close in a loop and then roll. Unfor-
tunately, the modular robot simulator we employed does not allow structures
with loops. Structures with loops are overconstrained. The simulation does
not solve the constraint satisfaction problem. The simulation does not detect
self-collision either.

To overcome this problem, we let the robot bend in an open loop (some-
thing like a ‘C’ shape) and then roll. Although this complicates the rolling
procedure, it allows us to maintain the general approach described before.
In fact, we still have a “head” and a “tail” agent that would be otherwise
removed if the loop were actually closed (i.e., with only “body” agents).

The RollingGaitTuple is the tuple employed to let the robot roll. In general
terms, it can have two states, T (turn) and F (flat). Consider, for example, a
robot composed of 12 modules and assuming a turning angle of 45◦. A tuple
spread in the robot with a distributed shape like “FTTFTTFTTFTT” (see
Fig. 9.19) closes in a loop. Then, if the tuple changes its content by “rolling”
the above string (like the ROL assembler command), the robot performs the
rolling gait.

From the single tuple point of view, this consists in changing its content
to assume values F - T - T iteratively. It is worth noting that such a kind of
content change critically depends on the number of modules composing the
robot and the number of turns we want to implement to let the robot close
in a loop. For example, three turns of 60◦ each create a triangular track, four
turns of 90◦ each create a rectangular track, etc. Moreover, it depends on
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the number of modules involved in each turn. For example, in Fig. 9.19, two
modules bend by 45◦ to create a 90◦ turn.

Despite all these parameters, it is rather easy to build a general algorithm
enabling a tuple to create dynamically, at runtime, the sequence of F and T
states it has to cycle (e.g., F - T - T) to enable the rolling gait.

A general description of the RollingGaitTuple enabling the rolling gait in
the case of a robot composed of 12 modules and assuming four turns of 90◦

each, split between two modules bending by 45◦, is illustrated in Fig. 9.20.
The code realizing the RollingGaitTuple can be found in Fig. 9.21. Some

snapshots showing the rolling gait in action are in Fig. 9.22.
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Fig. 9.19. In the rolling gait, the robot moves in one direction by shifting the
turning modules (T) to the opposite direction
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Rolling Gait Tuple C = (state, angle) P = (propagate hop-by-hop,

cycling between the states F - T - T. Set the angle to 45deg if

the state is T. Set the angle to 0 if the state is F)

Fig. 9.20. The rolling gait tuple

9.2.4 A Walking Legged Robot

Another experiment we performed on a different type of robot related to a
“legged” robot that can move by coordinating legs movements.

The idea of this experiment is to have the modules of the robot connected
in a 6-legs configuration (see Fig. 9.23), and then coordinate the actions of
these modules so as to let the legged robot walk. In this example, the robot is
built from two types of modules (both available from the Polybot simulator
[99]): joints and connectors. Among the several possible configurations upon
which it is possible to build a legged robot, the one we choose presents three
key advantages:

• The adopted configuration is very modular. In order to crate a robot with
more legs it is sufficient to add other legs (in multiples of two) at the end
of the previous robot.

• The robot is highly flexible. It can swing in pitch and yaw both the back-
bone and the legs.

• Most importantly for the upcoming discussion, modules have a direction
(front-rear) and they can distinguish both the kind of module to which
the are attached (i.e., joint or connector) and the orientation of the con-
nection (i.e., pitch-pitch, yaw-yaw, or pitch-yaw), see Fig. 9.24(left). Thus
each module can infer its position within the robot. Since connectors have
no degrees of freedom – they are passive components – they do not need
to localize. In particular it is possible to identify the following six im-
portant roles for modules: HEAD, SPINE, LEFT-SHOULDER, RIGHT-
SHOULDER, LEFT-LEG, and RIGHT-LEG (see Fig. 9.24(right)).

The robot in Fig. 9.23 is in the rest mode. The first tuple we envisioned
is the one forcing the robot to stand up (see Fig. 9.25). The code of this
StandUpTuple tuple (reported in Fig. 9.26) is really simple. It basically forces
all leg modules to turn 90◦. More precisely, the way in which modules are
connected implies that left legs should bend by 90◦, while right legs by −90◦.

Once the robot is standing up. It can start moving the legs to proceed
upward. This again is realized by letting the head of the robot inject another
tuple that propagates across the modules. This WalkerGaitTuple tuple is very
simple: it alternatively lets the left and right robot legs swing 45◦ forward.
The code of this tuple is reported in Fig. 9.27, while some screen-shots of the
actual robot movement are presented in Fig. 9.28.
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public class RollingGaitTuple extends MessageTuple

{

// number of modules composing the robot

private static final int N_MODULES;

// number of turning points

private static final int N_TURNS;

// radius of the turn

private static final int RADIUS ;

// turning angle in deg

private static final int TURN;

public int state = 0;

public int angle = 0;

protected void changeTupleContent()

{

if(this.getSourceFromId().equals(tota.toString()))

state = (state + 1)% N_MODULES;

int mod = Integer.parseInt(tota.toString().substring(1));

boolean cond = false;

for(int i=0;i<N_TURNS;i++)

{

boolean cond1 =

((state+(i*N_MODULES)/N_TURNS) % N_MODULES) == mod;

boolean cond2 =

((state+(i*N_MODULES)/N_TURNS) % N_MODULES) ==

((mod + RADIUS)% N_MODULES);

if(cond1 || cond2)

{

cond = true;

break;

}

}

if(cond)

angle = TURN;

else

angle = 0;

}

}

Fig. 9.21. The code realizing the RollingGaitTuple TOTA class
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Fig. 9.22. Some stages of a rolling gait in a chain-typed modular robot composed
of 32 actuators.

9.3 Final Considerations

In our opinion, robotic self-assembly is a research area that is destined for
dramatic growth in the near future. Advances in swarm robotics and in mod-
ular robots will lead us to a brand new world in which artificial societies of
simple computational particles will self-organize to create artificial organisms
made up of flexible computational cells connected with each other, and will
populate our everyday environments to (hopefully) put their capabilities at
our service.

In this context, field-based coordination will most likely play an important
role. Despite the simplicity of the experiments reported in this chapter, we
are confident that the capability of field-based coordination (and of TOTA) in
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Fig. 9.23. A modular robot arranged in a 6-legged configuration

Fig. 9.24. (left) Detail of a robot leg. The pitch-yaw orientation between the two
modules allows high flexibility. (right) Different neighbor connections allow each
module to estimate its role within the robot (0 = HEAD, 1 = SPINE, 3 = LEFT-
SHOULDER, 4 = RIGHT-SHOULDER, 5 = LEFT-LEG, 6 = RIGHT-LEG)

properly supporting biologically inspired interaction models – i.e., morphogen
gradients and hormones – will be the key to its future successes. However,
we are also aware that the widespread exploitation of field-based coordination
will require the identification of proper methodologies to help designers in
the development of complex field-based applications and, specifically, in the
development of complex self-assembling robotics artifacts.

In addition to that, we must also recognize that additional mechanisms
– not dealt with by this book – may have some impact in computational
self-assembly and are worth investigating. These include game-theoretic ap-
proaches [155] and cellular automata approaches [154, 88].
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Fig. 9.25. A 4-legged robot stands up

public class StandUpTuple extends MessageTuple {

// bend degree

private static final int Deg = 90;

public int angle;

protected void changeTupleContent()

{

int role = (RoleTuple)tota.read(new RoleTuple()).role;

if (role == RIGHT-LEG) angle = -Deg;

else if (role == LEFT-LEG) angle = Deg;

else angle = 0;

}

}

Fig. 9.26. The code realizing the StandUpTuple TOTA class.
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public class WalkerGaitTuple extends MessageTuple

{

//states

private static final int FORWARD = 0;

private static final int REVERSE = 1;

public int state = FORWARD;

public int angle = 0;

protected void changeTupleContent()

{

int role = (RoleTuple)tota.read(new RoleTuple()).role;

if (role == RIGHT-LEG) angle = -45;

if (role == LEFT-LEG) angle = 45;

if (role == SPINE) angle = 0;

if (state == FORWARD)

{

if (role == LEFT-SHOULDER) angle = 0;

if (role == RIGHT-SHOULDER) angle = -45;

state = REVERSE;

}

else

{

if (role == LEFT-SHOULDER) angle = 45;

if (role == RIGHT-SHOULDER) angle = 0;

state = FORWARD;

}

}

Fig. 9.27. The code realizing the WalkerGaitTuple TOTA class.
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Fig. 9.28. The legged robot walks by coordinating legs movements.



10

The Cloak of Invisibility

Is it possible to create a cloak of invisibility – a flexible artifact that can make
anything inside it invisible despite mobility and deformation? Humans have
dreamt of what invisibility might mean since the beginning of civilization, and
this dream persists in today’s literature and culture. However, although more
improbable methods of invisibility will remain unrealized, an invisibility cloak
could be feasible in the future through technology.

In this chapter, we intend to show that a cloak of invisibility can be –
at least conceptually – built by exploiting a huge network of tiny micro-
devices (i.e., literally a network of spray computers) and content-based access
algorithms like the ones described in Chap. 8 [163].

In particular, our proposal is for a fabric of small computing devices, ca-
pable of receiving and retransmitting light emissions in a directional way,
and capable of interacting with each other in a wireless amorphous network
[20, 102]. While someone or something is inside the cloak, the emissions of the
cloak devices make external observers perceive exactly the same light config-
urations they would have perceived if nothing were in between. Sensors on
the rear side of the cloak can receive such configurations and, by distributed
coordination, can communicate them to emitters on the observer’s side to be
retransmitted.

Building a solid wall exhibiting such a property for an observer at a fixed
position may be already difficult. Even more challenging problems arise when
such a property has to be preserved:

• for any observer in any position;
• for any shape of the cloak;
• despite deformations of the cloak tissue.

This chapter does not have the ambition to present fully fledged solutions
to all of the complex issues involved. Still, in the attempt of sketching some
promising solutions, with the use also of field-based coordination and TOTA, it
brings together a number of technological and algorithmic aspects (related to
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Smart Dust technology [114], sensor networks [33], mobile computing and ad
hoc networks [33, 118], peer-to-peer and content-based coordination [52, 113],
and self-organization and self-localization [102, 164]), showing once and for all
the strict relations between apparently diverse emerging scenarios, relations
that we identified since the beginning of this book.

For the sake of readability, we present our arguments in an incremental
step-by-step way. For each step, we discuss the associated technological and
software challenges, and the artifacts you might create after resolving the
challenges.

10.1 STEP 1. The Invisible Wall

Let us consider the basic scenario of realizing a rigid flat wall invisible to a
single fixed observer at a known position (e.g., centered in front of the wall
and at a known distance from it). You could do this simply by having a camera
capture everything behind the wall (from the known fixed perspective of the
observer) and project it on the front side of the wall.

The alternative we propose, serving as a basic building block toward the
definition of the cloak of invisibility (where the constraint of a fixed single
observer will be removed), is to build the invisible wall by making use of a
network of small computer-based devices. In particular, two kinds of devices
are needed:

1. IN devices, sensors capable of perceiving light emissions and of transform-
ing them into digital signals, such as the CCD sensors of a digital camera;

2. OUT devices, capable of emitting light according to specific signals re-
ceived, such as LCD displays, LEDs, and micro-lasers.

Of course it is possible to conceive devices acting both as IN sensors and
OUT emitters.

To realize the wall, the basic principle is to deploy densely packed IN and
OUT devices on the two sides of the wall, respectively. We do not consider
such devices as placed in a regular – possibly wired – grid (as in cameras and
monitors). Instead, we consider the wall randomly filled with unwired devices,
to avoid any placement and wiring efforts and to enable us, say, to “paint” or
“spray” the wall with transparent glue mixed with sensors and emitters. Such
a choice, while it increases flexibility and fault tolerance, requires devices to
have short-range wireless communication capabilities (optical- or radio-based)
[104] and to be either internally self-powered (e.g., by solar energy or by some
sort of light battery), or laid on a conductive substrate feeding them with
external power.

Once painted, each of the IN devices must record the information on the
light locally incident on the wall, and transmit it to the opposite side of
the wall to the corresponding OUT devices, so as to globally reconstruct the
image. Such transmissions, due to the short-range communication capabilities
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– and not to limit the potential size and thickness of the wall – must occur
in a multi-step fashion, by properly routing messages across the network to
their destination (see Fig. 10.1(left)). Of course, this requires the two sides of
the wall to be seamlessly part of the same network, so that a message can be
routed from one side to the other by continuously traveling over the network
(e.g., with regard to Fig. 10.1(left), we assume that the gray lateral parts of
the wall are filled with devices too).

10.1.1 Software Issues

The possibility of deploying sensors and emitters without any predetermined
layout can dramatically cut the costs in building such a wall. However, it
complicates software design. In particular, when dealing with the software to
control such an artifact, there are two main issues that need to be addressed:

• How can devices determine where they are so as to properly establish the
IN and OUT pairs?

• How is data routed across the network from IN to OUT devices?

With regard to the first question, since devices are spread randomly on
the wall (e.g., by a painting process), they do not have any a priori knowledge
about their position. However, this information is fundamental: each device
will in fact find its mate by looking for the device on the opposite side of the
wall having the same coordinates.

Of course, the use of GPS technology is ruled out, due to the lack of the
required accuracy and due to its costs [50]. The alternative solution could
be based on a triangulation algorithm, like the one presented in Chap. 8
(i.e., Subsect. 8.3.1). More concretely, we can suppose that each IN and OUT
device runs the TOTA middleware and injects by TOTA the tuples required
for establishing a coordinate frame.

Given the availability of a set of coordinates, the same for the two sides
of the wall, the second question can now be restated as, how can the data
sensed by an IN device at coordinates (XIN, Y IN) be routed to the OUT
device positioned at the (XIN, Y IN) coordinates on the opposite side of
the wall? Better, since there is not necessarily an OUT device at exactly
the same coordinates (or since such a device can be dead or be temporarily
unreachable), how can such data be routed to the OUT device closest to
(XIN, Y IN)?

The answer, in this case, is rather simple (see Fig. 10.1(right)). Each IN
device has to inject a TOTA tuple in the form (see Fig. 10.2) (XIN, YIN,
Color) representing the image information it has captured at its own coordi-
nates. Such a tuple can then propagate in a directional way, from device to
device, toward the closest edge of the wall. Then, once the tuple has reached
the opposite side of the wall, propagation proceeds from device to device in the
direction toward the (XIN, Y IN) coordinates. Propagation stops when the
OUT device at the (XIN, Y IN) coordinates is reached, or when no emitter
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Fig. 10.1. The invisible wall: (left) A global view; (right) Local routing of a tuple
toward a specific point

closer to the goal is found in the neighborhood. Note that this kind of propa-
gation can be easily obtained by embedding in the TOTA tuple propagation
a geographic routing algorithm like the one described in Subsect. 8.3.2.

Wall Tuple

C = (XIN,YIN, Color)

P = (propagate using geographic routing algorithm to the node

closest to XIN, YIN on the opposite side of the wall)

Fig. 10.2. Each IN device has to inject this TOTA tuple representing the image
information it has captured at its own coordinates. Such tuple can then directionally
propagate to the corresponding OUT device

10.1.2 Optical and Hardware Issues

What should be the size of the above devices to provide a reasonable visual
rendering? Following the Listings-Donders model of the human eye [41] (see
Fig. 10.3) we can define θmin as the minimum angle at which the points A and
B are perceived separately . This angle is approximately 1/60◦, the minimum
at which two light rays hit two distinct cone cells separated by a cone cell not
hit. Thus, considering Fig. 10.3, A and B are perceived separately only if

l > d · tan(1/60◦) ≈ d/3400
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In order to have a good image the distance between any two devices has
to be less than d/3400 (e.g., two objects separated by 1 mm are perceived as
a single object from a distance of 3400 mm = 3.4 m).

Fig. 10.3. Listings-Donders model of the human eye

For instance, to render invisible a wall of 1 m2 from a distance of 10 m,
115600 devices on each side of the wall are required. In fact, the allowed max-
imum distance between two devices to provide the impression of smoothness
is 10/3400 = 2.9 mm. So, each device must be approximately 2.9 mm2 ≈ 8.4
mm2 wide, a linear meter must have at least 340 devices and a square meter
115600 devices (3402).

The above requirements appear feasible with regard to the state of the art
in optical MEMS technologies. For instance, in the context of the Smart Dust
project at Berkeley [114, 136] internally powered computer-based sensors and
emitters of few mm2, which could well serve our purpose, have been already
realized for a few years.

Even the amount of data to be dealt with by each device and by their
wireless communication channels is not challenging. If we assume each device
should record and transmit a 24 bit value for the color information (16 million
colors) and two 16 bit values representing device coordinates, this results in a
24+16+16=56 bit tuple. These values must be updated 30 times per second
as the normal television frequency. In the case of a 1 m2 wall, with devices at
an approximate distance of 2.9 mm, and assuming that the communication
range enables a device to connect only to its closest neighbors (a very strict
hypothesis), the routing process of a tuple takes 170 steps on average and, in
the worst case of centrally located pairs, 340 steps. Thus, devices located at
the edge of the wall (the ones dealing with the highest traffic) will be in charge
of routing information for all of the 170 other devices on the line between them
and the center of the wall. All this considered, the wireless link bandwidth of
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a single device should be (170 · 56 bit) · 30 Hz ≈ 286 kbit/sec to sustain such
peaks, low enough to be sustained by modern micro devices.

In any case, we emphasize that we are considering here the very physio-
logical limits of the human eye. For several applications, less strict constraints
(and a coarser rendering) may be enough.

10.1.3 Applications

Since it can render the image only from a fixed perspective, the described wall
cannot render invisibility: any observer moving around it would not perceive
the image, produced by the OUT devices, changing according, making the
illusion vanish. Still, a transparent wall can have several potential applications
in all those cases where there is the need for observing without being observed
(e.g., in therapy and investigation, as well as in entertainment). The advantage
with regard to more traditional technologies (e.g., camera-based or magic-
mirror-based ones) relates to the fact that its installation is not intrusive, and
does not require specific infrastructures or skills.

The described technology would also allow building more interesting ar-
tifacts. Specifically, an amorphous network perfectly analogous to the one
described in this section could be used to produce a paintable television (or
monitor): a television to be sold as a paint that, once applied, starts working
as a normal flat screen television. The idea, in that case, is to have a TV signal
receiver at one of the edges of the painted wall act also as a beacon for the
network coordinate system. Once all emitters are localized, the receiver can
transmit tuples in the form (X,Y,Color), to be propagated in the network of
emitters to render the TV image.

10.2 STEP 2. The Invisible Object

The real power of invisibility, and of a larger class of related applications, can
be effectively enabled only by making it possible to paint invisible objects of
any shape, other than on a flat wall, and by enhancing image rendering so
as to relax the constraint of the fixed and single point of observation, and
to render invisibility to multiple and possibly mobile observers. The idea is
that the object gets completely covered by a sensor network so that, for any
point of its surface, any ray of light incident from any direction gets properly
captured and retransmitted on the opposite side of the surface.

By assuming that one or multiple observers can move around the object
and see all its sides, the IN and OUT devices described previously must be in-
tegrated together in a single device (or, from a different perspective, they must
be both densely painted on the whole surface): in fact, there are no longer
separated IN and OUT sides on the object. Moreover, if we want the object
to show what is behind it independently of the position of the observers, each
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Fig. 10.4. The invisible object

portion of the surface should be able to retransmit different light configura-
tions in different directions, so as to virtually extend all (a reasonable number
of) the rays of light incident on the object (see Fig. 10.4). To this purpose, we
can consider a device as a compound object capable of acquiring different light
information (IN function) and of firing different light rays (OUT function) in
different directions. Alternatively, we can consider a device as a unidirectional
sensor or emitter. By distributing these unidirectional devices densely on the
object surface (with a random orientation, as it would derive from painting),
any portion of the surface will have, with high probability, sensor and emit-
ters pointing in all directions. In the following, we mainly consider this latter
alternative.

10.2.1 Software Issues

Given the above distribution of devices, implementing invisibility is apparently
very similar to the case described in the previous subsection: each IN device
must provide light information to the OUT device on the “opposite” side of
the object, i.e., to the emitter on the surface which is the closest (in terms
of both surface position and orientation) to the virtual extension of the ray
of light captured by the sensor. However, in this case, answering the same
questions introduced before (how devices determine their position and the
IN-OUT pairs, and how data can be routed from IN to OUT devices) is more
challenging.

To explain the problems related to the above issues and to present our
proposal to solve them, it is important to distinguish between what we call
extrinsic and intrinsic coordinates.

Extrinsic coordinates identify the position and orientation of devices
with respect to a three-dimensional frame attached to the object (see Fig.
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Fig. 10.5. (left) Extrinsic coordinates. (right) Intrinsic coordinates

10.5(left)). The extrinsic coordinates of a device could be represented, for in-
stance, by its (X,Y,Z) coordinates and by the two angles (θ, ω) determining
its orientation.

Intrinsic coordinates, instead, specify the positions of devices in the object
surface. In other words, they are two-dimensional coordinates (ξ, η) mapped
on the surface and establishing a frame on the object’s surface (see Fig.
10.5(right)).

Extrinsic coordinates of a device are fundamentally important, in that they
unambiguously determine the coefficients of the specific ray of light associated
with the device, i.e., the ray of light received and blocked by an IN device, or
the ray of light to be reproduced by an OUT device. Thus, an IN-OUT pair
has to be established between two devices whose extrinsic coordinates identify
the same straight line (i.e., the ray of light to be reproduced). Therefore,
each device must know its extrinsic coordinates to establish such a pair. The
determination of the extrinsic coordinates of a device in a distributed way from
local information can take place by extending the beacon-based localization
mechanism – already discussed with respect to the wall of invisibility – to
consider the local curvature of the object and the orientation of the devices.

Local curvature can be determined from within the surface in a totally
distributed manner by taking into account the following geometric property:
while on a plain surface the ratio of the circumference to the radius of a circle
is always 2π, on a curved surface this is no longer true. In fact, on a curved
surface, the ratio of the circumference to the radius of a circle as measured on
the surface decreases as the curvature increases (this is because the measured
radius is actually an arc on the surface). Starting from this property, each
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device can measure the local curvature of the object on which it is located
by measuring the circumference and the radius of a small circle centered on
itself.

As described in [148], this can operatively take place by using the following
algorithm. Each device probes the neighborhood, and determines the number
of devices at a given distance (i.e., the circumference) and the number of
devices on the shortest path from the central device to a neighboring device
(i.e., the radius). Then, examining how far their ratio is from 2π, it can infer
the local curvature.

Moreover, each sensor must also be able to determine its orientation with
respect to the frame. This information can be obtained by comparing the
beacon’s orientation with other sensors’ orientation, in an recursive manner (as
supported by TOTA tuples). For this purpose each sensor must be equipped
with a proper device capable of determining relative orientations [50]. It can be
observed that determining relative orientations through the above-described
procedure depends on the way in which the process spreads from the beacon
(in a curve object). Following the Levi-Civita approach [137], we will consider
as the valid direction the one obtained considering the shortest path (geodetic)
from the beacon (see Fig. 10.6).

Once the above information (both curvature and devices’ orientation) has
been gathered, the extrinsic coordinates can be easily obtained by a simple
variant of the previously described triangulation procedure. Again, it is impor-
tant to remark that the TOTA distributed tuples provide a natural support
to all these operations.

Y
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0
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240

180

Fig. 10.6. Beacon-based evaluation of orientation

Unfortunately, even once each device knows its extrinsic coordinates (so
that IN devices know what rays of light they block and OUT devices know
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what rays of light they have to reproduce), such knowledge is of no help in
establishing the correct IN-OUT pairs that would enable a ray of light to be
reproduced. In fact, if an IN device starts propagating a tuple reporting its
extrinsic coordinates and the color to be reproduced, (X,Y,Z, θ, ω, Color),
the information contained in it cannot be exploited to properly route the
message toward the corresponding OUT device. In fact, extrinsic coordinates
do not tell in any way where a ray of light “entering” the object will “exit” the
object, this being dependent on the shape of the object. Without any local
knowledge about the global shape of the object (information which is simply
impossible to store locally on each device, unless the object is very regular)
one can a priori know neither where the tuple should eventually arrive nor the
correct direction to the destination. To solve this problem without flooding
tuples across the whole network, we need a strategy to route information
even without an explicit knowledge of the mates’ extrinsic coordinates. This
is where intrinsic coordinates come in.

Evaluating intrinsic coordinates is perfectly analogous to the flat wall case
and, unlike extrinsic ones, intrinsic coordinates can be effectively exploited
to route tuples toward a specific point on the surface, by making a tuple
progressively approach the needed destination, as we have already shown for
the case of the rigid wall (the fact that, on a closed surface, discontinuities in
the intrinsic coordinates inevitably arise, can be easily solved by the routing
algorithm). So, to solve the problem of establishing IN-OUT pairs, one could
think of somehow exploiting intrinsic coordinates instead of extrinsic ones.
The main idea of our proposal is that each device, once it has determined its
extrinsic coordinates, can determine the coefficients (coeffs) of the straight
line that coincides with the ray of light incident on it. Of course, two IN and
OUT devices are mates if and only if they compute the same (or very close)
coeffs. Then we can use a content-based communication mechanism, like the
TOTA one, to let opposite sensors interact.

Specifically, let us suppose that all the TOTA devices agree on a continuous
hash function H that maps an equation’s coefficients in intrinsic coordinates
(ξ, η). An IN device A can then send the tuple containing the color infor-
mation to the device at intrinsic coordinates H(coeffA). An OUT emitter
B, by its side, can try collect color information from the device at intrinsic
coordinates H(coeffB). Thus, if A and B are mates, the calculated intrinsic
coordinates are H(coeffA) = H(coeffB), identifying a unique device closest
to those coordinates. This device will act as the rendezvous point of content-
based routing (see Fig. 10.7) to establish the pair and exchange the needed
information. Of course, the extrinsic coordinates must be carried with the
message to deal with hash collisions, i.e., to check the correctness of a forming
pair in the case of multiple pairs using the same rendezvous node.

We want again to emphasize that, as shown in the previous sections, the
TOTA middleware is ideally suited to support this kind of interaction.
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Fig. 10.7. Rendezvous communication

10.2.2 Optical and Hardware Issues

By considering each sensor and emitter as a separate device, the number
of (directional) devices involved to render invisible an object may be very
high: in fact, the object surface must be densely filled with sensors/emitters
oriented toward all the possible directions of the object’s outer space. To pro-
vide some quantitative data, we can reapply the considerations already made
with respect to the wall of invisibility to a sphere of 1 m diameter. Let us
consider again for just a moment a single fixed point of observation; in this
case, to render invisibility at a 10 m distance, the sphere surface must be cov-
ered by approximately 372000 devices, each one 8.44 mm2 wide. This number
again derives by the Listing-Donders model: from a 10 m distance, a device
of 8.44 mm2 is seen as a single point, and it is easy to calculate that there is
room for 372000 such devices in a 1 m diameter sphere. When such property
has to be preserved for any direction of observations, however, the area of
8.44 mm2 previously occupied by a single device, has now to include a high
number of sensors and emitters pointing in different directions. In particu-
lar, as a first approximation, we can say that the creation of a smooth 3D
“view” of an object requires that the number of directional sensors/emitters
in the 8.44 mm2 area be at least half of the total number of such areas (i.e.,
372000/2=186000). This is because, to acquire/display a coherent image from
all the possible points of view in each of the 8.44 mm2 areas, there must be at
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least one sensor/emitter to support any of the other sensors/emitters directly
visible from a common viewpoint (that is about the number of sensors/emit-
ters in a half of the surface, e.g., a hemisphere). To makes it possible to fill
a 8.44 mm2 area with 186000 sensors and with a similar number of emitters,
each of these devices should occupy an area smaller than 5 µm · 5 µ m. A
single stand-alone computer-based device of that size is hardly imaginable.
Still, one can think of packing in and controlling by a single compound device
multiple optical micro devices pointing in different directions. Efforts such
as the ones at Texas Instruments (where micro-displays made up of electro-
statically actuated mirrors of a few µ have already been produced) and at
Philips Research Laboratories [34] (showing the possibility of growing µ-scale
LCD cells on any type of surface) demonstrate the potential feasibility of such
an approach.

Coming to bandwidth requirements, we can apply calculations similar the
ones in the previous section. To code the (X,Y,Z, θ, ω, Color) information,
each tuple has to carry its extrinsic coordinates to avoid hash collisions, while
the intrinsic coordinates required for routing can be dynamically recomputed
at each hop – the number of bit required is 24+5 · 16 bit = 104 bit. Consid-
ering that each message has to be routed, in the worst case, for 1.57 m (half
of a maximum circle in the sphere), an IN-OUT communication occurring
through a rendezvous device would require, in the worst case, 3.14 m, i.e.,
1082 hops (we assume that the wireless communication range is long enough
to transmit over the 8.44 mm2 area). Thus, for a single directional facet, i.e.,
for a unidirectional device, the required bandwidth to route 30 messages per
second for a maximum worst case of 1082 other devices is 1082 · 104 bit ·
30 Hz ≈ 3.4 Mbit/sec (although the average bandwidth required by sensors
may be lower). By considering packing in a single compound device all the
devices contained in the 8.44mm2 area (i.e., 372000 devices), the bandwidth
requirements for a single compound device increase tremendously (approxi-
mately 1.2 Tbit/sec). Achieving such a bandwidth in such small devices is
indeed very challenging, but not technically impossible, especially when tak-
ing into account recent advances in the area of terahertz band technologies
[80]. In addition, one could also think of exploiting AI and image-recognition
technologies to have sensors track the position of observers and reduce their
efforts by rendering invisibility from a limited set of viewpoints.

10.2.3 Applications

The most natural applications of invisible objects are in the military market,
e.g., invisible cars and tanks, and in the nonintrusive study of natural ecosys-
tems. Moreover, several other applications can be conceived, by exploiting in
different ways the achieved power of invisibility.

By considering painting the internals of an object (e.g., of a room) instead
of its external, one can produce realistic immersive virtual reality environ-
ments, freeing users from wearing intrusive hardware [113] and from sticking
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to a specific place in a specifically shaped room [60]. A related application
with a great potential market in southern Europe comes from the possibility
of producing paintable windows. Tall buildings, very dark inside due to both
narrow windows and narrow streets, characterize south European cities. Since
local laws forbid changing the structure of these buildings, the only solution to
improve the quality of living within them would be to paint virtual windows:
from the inside, they would look like real huge windows; from the outside, no
changes to the building would be perceived.

More generally, the outlined technology can be effectively exploited to
produce visibility despite occluding objects. For instance, one could produce
trucks with notable rear visibility by appropriately painting them. Also, one
could consider solving the problem of limited visibility on mountain trails by
painting portions of the occluding slopes.

10.3 STEP 3. The Cloak of Invisibility

The last constraint we have to remove in order to build the cloak of invisi-
bility (or more generally, a comfortable invisible cloth) is rigidity. The above-
described network of devices needs to be deployed on a flexible fabric, that
can be deformed according to unpredictable dynamics and shapes, due to
both external (e.g., wind) and internal (e.g., movement of the person wear-
ing it) factors. Here, the challenge is that, because of the cloak’s movements
and folding, devices can change their relative positions and orientations quite
rapidly with time.

10.3.1 Software Issues

In contrast with the previous cases, IN-OUT pairs in a flexible cloak must
necessarily be continuously reestablished to reflect the cloak’s movements.
In particular, while the device’s intrinsic coordinates remain fixed, extrinsic
coordinates may change continuously. For this reason, the routing problem be-
comes particularly challenging and it must account for the overhead in main-
taining an overlay coherent structure over the cloak’s amorphous network. To
solve this problem, we could envision two different strategies.

As a first strategy, devices could reevaluate their extrinsic coordinates
continuously (e.g., 30 times per second) to account for cloak reshaping. The
communication would then proceed with the rendezvous approach described
in the previous sections. Unfortunately, this strategy imposes a notable com-
putational and communication overhead on devices, leaving little room for the
activities related to image rendering.

As an alternative strategy, one could think of relying on at least a small
rigid portion of the cloak (e.g., a belt or a necklace) as a central point for
geometrical references. Both IN and OUT devices, without being forced to
know a priori their extrinsic coordinates, could send a partially undefined tuple
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(containing only the color information) toward the rigid reference point. While
being routed from the source toward the rigid portion of the cloak, each of the
intermediate devices could dynamically compute the geometric information
related to the path followed by the tuple, and include such information in the
tuple itself before propagating it. Once the tuple arrives at the rigid portion
of the cloak, it can exploit the information collected during the travel to
discover the extrinsic coordinates of the source. At this point, it can apply
the hash-based rendezvous mechanism to meet its mate. The drawback of
this solution is to produce load imbalances, by concentrating computational
and communication activity in (and in the proximity of) the rigid portion of
the cloak. We do not ignore the fact that better strategies and algorithmic
solutions may exist. Sources of inspiration can be possibly found in the area
of mobile ad hoc networks, where the focus is on enabling mobile peers to
communicate with each other, despite the continuously changing topology of
the network [20].

Independently of the solution being adopted, the self-maintenance of
TOTA tuples can be of help to support cloak reshaping, by adapting the
structure of fields automatically.

10.3.2 Optical and Hardware Issues

Cloak flexibility does not change the optical and size characteristics of the
devices, already outlined in Sect. 10.2. What may change instead is their
bandwidth requirement, as induced by the additional communication overhead
to support cloak deformations and dynamic reforming of the IN-OUT pairs.

If we consider the first of the solutions proposed (dynamic recomputing of
positions and orientations), and optimistically assume that such a solution is
computationally feasible, the bandwidth requirements are likely to dramati-
cally increase, due to the iterations of the relocalization process. If we consider
the second of the proposed solutions, it appears like the bandwidth require-
ments do not even double. In fact, before each message can be routed to the
appropriate rendezvous place, it has to travel toward the rigid reference point
(e.g., the belt). Thus, each message on a flexible cloak travels for a total dis-
tance that would be less than twice the distance it would have traveled in the
case of a rigid object. However, such considerations must be carefully checked
against the load imbalances introduced.

A key issue in which a deformable, wearable, cloak can be advantageous
over a wall or a rigid object relates to energy recharging. In fact, even in
the absence of external power supply, (i) the inertial forces induced by cloak
movements can be used for mechanically recharging the devices and (ii) the
thermal energy of the human body can be an alternate source of energy for
wearable computing systems (e.g., thermal-body-powered clothes are already
available by Infineon Technology).

A final note relates to the cost of such an artifact. It is foreseen that large-
scale production of MEMS computer-based systems will reduce their costs, in



10.3 STEP 3. The Cloak of Invisibility 221

the near future, well below 1 Euro each [114]. A cloak of invisibility of 3 m2

would require approximately 372000 compound (multidirectional) devices to
be invisible at a 10 m distance, implying an overall cost well below a half
million Euros.

10.3.3 Applications

In addition to a cloak, one could build any type of clothing by using the
same technology. Their use in military operations and investigation would
be definitely of great use, although ethically debatable. We better envision
the use of invisibility clothes in fashion and entertainment markets. With
regard to fashion, it is possible to think of small (and cheap) portions of
clothes and accessories (e.g., T-shirts, bracelets, or necklaces) enriched with
invisibility frames. With regard to entertainment, a cloak of invisibility could
be effectively used as a tool for augmented and virtual reality games in parks
like Disneyland.

Another application we have thought about, but whose feasibility we are
by no means convinced about, is internal body monitoring. The idea would
be to have a patient drink (or be injected) a set of sensors, and let them
distribute in the zone of the body of interest (e.g., the stomach). Then, by
an emitter-based cream to be painted on the body of the patient (e.g., the
belly), one could see the body’s interior, despite the internal movements of
the body and of the sensors within it. Should this not be feasible with regard
to the human body, it would be probably feasible to visualize other types of
“internals” (e.g., an underground river or a complex pipeline) characterized
by dynamic internal activity.

As visionary and speculative the cloak of invisibility and the related appli-
cations can be, the associated coordination activities can find natural applica-
bility in much more concrete scenarios. With this in mind, we think that the
support TOTA gives to all these activities is a good hint about its soundness
and its potential extent of applicability.
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Conclusions

Starting from the recognition that most emerging distributed computing sce-
narios challenge traditional approaches to distributed systems engineering,
this book has outlined the fundamental role that will be played in that con-
text by the choice of a proper coordination model. The design of large-scale,
decentralized, open, and dynamic distributed systems, rather than relying on
static, architecture-centric design approaches, should focus on the engineering
of component interactions, by relying on a flexible and expressive coordination
model, able to support context-awareness and adaptive self-organization.

Among several potential candidates, most of which getting inspiration from
the models of interactions found in natural systems, field-based coordination
appears a very general and usable one. All along the book, we have shown
that field-based coordination (and in particular the Co-Fields model as em-
bodied by the TOTA middleware) has several advantages that are likely to
facilitate the design and development of adaptive self-organizing multiagent
applications.

11.1 Key Advantages

The key advantages of field-based coordination – as they have emerged from
this book – can be summarized as follows:

• Expressive Context-Awareness. Field-based coordination provides a suit-
able and expressive means to enforce context-awareness. Fields can convey
any kind of contextual information across a distributed system, and can
tailor the representation of this information to specific application needs.
By means of fields, agents can be provided with locally accessible contex-
tual information that can be used to represent global properties of their
context, and that can be used by agents to achieve their goals directly.

• Simplicity of Programming. The expressive power of fields directly con-
tributes in simplifying the internal activities of agents. In fact, application-
specific fields can be shaped so that agents can immediately recognize what
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they have to do, without being involved in complex activities to interpret
contextual information and decide how to act.

• Adaptive Self-Organization. Fields are used as an indirect interaction
mechanism between agents. This uncouples the interacting agents, which
do not have to know each other a priori, thus making fields suitable for
decentralized and open scenarios. Also, interactions mediated by fields pro-
mote a design as a whole perspective: the global behavior of a system (as
resulting from the ensemble of the individual agents’ behaviors) is driven
by the global configuration of the fields distributed in the environment.
Thus, an overall self-organized behavior of the system naturally emerges
from the continuous feedbacks induced by having agents act on the basis
of perceived fields and, consequently, by having them influence the global
field configuration. The fact that fields continuously reshape to reflect the
current system situation, makes such self-organizing behaviors also intrin-
sically adaptive.

• Biologically Inspired Computing. Although field-based coordination owes
to physical inspiration, fields can be effectively used to reproduce a variety
of interaction models typical of biological systems that have already found
practical applications in several areas. These include pheromone-based co-
ordination, morphogen gradients, and hormones.

• Semantic Self-Organization. Most approaches to self-organization assume
that agents are very simple components devoted to reacting to specific en-
vironmental stimuli, without requiring any cognitive ability. Field-based
coordination can support such simple reactive forms of self-organization,
but also promotes enriching fields with expressive semantic information
to give agents the possibility to exploit their cognitive abilities to au-
tonomously decide how to act, other than by simply reacting. There-
fore, field-based coordination may leverage reactive self-organization ap-
proaches toward more sophisticated forms of cognitive or semantic self-
organization.

• Effective Modeling. Field-based coordinated systems can be effectively
modeled by the simple and familiar formalism of dynamic systems. This
modeling enables us to evaluate the effectiveness of an envisioned field-
based solution by simply writing a few differential equations, integrating
them with the help of some mathematical software, and visualizing the
resulting behavior of the system.

• Effective Implementation. Field-based coordination can be implemented
by making use of available middleware infrastructures, or it can rely on
appropriate middleware infrastructures – like TOTA – explicitly conceived
to support field-based coordination in dynamic network scenarios.

The additional fundamental advantage of field-based coordination is its
generality. As we have tried to show in this book, field-based coordination
can be suitably applied in very diverse application scenarios. At the so called
micro scale, field-based coordination can be used to enforce self-assembly and
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self-configuration in swarms of simple computational devices and in spray com-
puters. At the so-called medium scale, field-based coordination can be used
to support self-localization for the nodes of a MANET, geographical routing
algorithms, and the coordinated activities of humans and robots in perva-
sive computing environments. At the so-called global scale, we still require
satisfactory experiences, but are nevertheless confident that field-based coor-
dination could find additional practical applications in wide-area distributed
computing (e.g., P2P and the Grid). In this regard, it is worth pointing out
that researches such as [3, 98] already adopt field-related ideas, at the global
scale.

11.2 Open Issues

Despite its notable advantages, several research work is still needed to make
field-based coordination a practically usable tool for the extensive design and
development of complex self-organizing distributed applications.

Some of the most critical open research issues we have identified include

• Methodologies. A critical open issue in field-based coordination (and conse-
quently, in Co-Fields and TOTA) is the lack of an effective underlying gen-
eral methodology enabling engineers to map a specific application goal into
the corresponding definition of fields and their distributed shapes. In very
simple application cases, the identification of fields can come rather easily
from the problem definition (e.g., to have a group of agents meet, simply
make them emit gravitational fields that attract them toward each other);
see also Subsect. 5.3.6. In more complex cases, the lack of precise guidelines
in identifying fields or in supporting the building of complex field-based
coordination patterns from the composition of simple ones, leaves all the
responsibility in the skill of designers. In pursuing the long-term goal of
identifying suitable methodological guidelines to support designers, we are
trying to gain experience with field-based coordination in more and more
complex scenarios. The experiences and the lessons learned during this
process, together with a documented catalogue of several field-based co-
ordination patterns, will possibly form the embryo of a general-purpose
supporting methodology. In any case, we emphasize that the lack of a
methodology is not a specific drawback of field-based coordination, but it is
a general limitation of all researches in the area of complex self-organizing
distributed systems.

• Tools. Along with the identification of a proper methodology, designers
and developers should be provided with proper tools to make their work
of building field-based coordinated applications more efficient and reliable.
The modeling tools presented in this book, together with the simulation
tools of Co-Fields and TOTA, are only very preliminary results in that
direction. More flexible and extremely realistic simulation tools, suitable
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to reliably predict the behavior of a prototype system in the target opera-
tional environment, are required. Profiling tools must be integrated within,
to properly benchmark applications and identify their limitations and bot-
tlenecks prior to actual deployment. Novel decentralized control tools must
be invented to enable developers to tune the behavior of a running system
without having to stop it, and without undermining its basic capabilities
of self-organization. More in general, the results that researchers in the
area of complex adaptive systems are continuously producing should be
properly documented, as they represent potential sources for the identi-
fication of novel tools to improve our capabilities in properly managing
complex computational systems.

• Applications. Although field-based coordination is indeed a general model
to orchestrate the activities in a distributed system, we feel that almost
all the applications of this model are somewhat biased toward motion
coordination (i.e., following a field spread across the physical space). In
this book, we presented lots of applications in which human users follow
such fields, others in which messages follow such fields (e.g., for the sake of
routing in a network), and others where robots move following such fields;
the motion bias is clear. Still, some applications somewhat avoiding this
bias are possible; see Subsect. 4.3.4 and Sect. 9.2. We think that exploring
how field-based coordination can be applied to non-motion scenarios is a
ripe and still open research avenue.

• Security and Privacy. This book has mostly disregarded security issues;
what field-based coordination may imply in terms of security and privacy
is still to be deeply explored. Nevertheless, some preliminary considerations
can be made. When fields are propagated in a distributed computing en-
vironment to convey contextual and application-specific information and
to support the coordinated activities of distributed agents, security and
privacy become critical issues. One should be able to prevent third parties
from reading private information conveyed by fields, despite the fact that
these fields may propagate in various – possibly untrusted – regions of
the system. Also, one must avoid modifying the structure of existing fields
or the information they convey: the result could be a global alteration
of the whole field-based coordinated system. Considering the robotic self-
assembly scenario, such a kind of intrusions could be capable of morphing
self-assembled robots at will. Both these issues, plus any others still to be
identified, are open to research.

• Relations with Other Approaches. Other than field-based coordination, a
number of additional mechanisms and models – not covered in this book
– have been successfully experienced to enforce adaptive self-organization
in complex distributed systems. Negotiation mechanisms and agent-based
economies [78, 28], interactions based on competitive games [155], cellular
automata [154, 88], and the mechanisms of emergence of complex struc-
tures in networks [2], all represent interesting alternative approaches. In
this book, we have been able to show how field-based coordination can be
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used to model several biologically inspired coordination models. How and
to what extent field-based coordination can support the modeling of these
additional approaches, or how it can be somewhat integrated with them,
is still to be explored.

• Identification of More General Models. An even more general question is
whether field-based coordination is only the first step toward the identi-
fication of a more general and powerful coordination model for the next
generation of distributed computing systems. Of course, if we had an an-
swer, we would have written a different book. Nevertheless, as scientists,
we have the moral obligation to be always unsatisfied with what we have
and to continuously look for better and more general solutions.

11.3 Perspectives

Solving the above issues, and leveraging our currently limited capabilities in
developing and managing very complex and dynamic software systems, will
open up brand new scenarios that, as of today, may appear visionary.

In a not so distant future, we expect the everyday activities of humans will
be supported by an ubiquitous environment of adaptive and self-organizing
computational services, always available to cater dynamically to our needs in
a context-aware manner. The Internet as we know it today will become like an
immense organism of composite, highly distributed, pervasive, and context-
aware services. Such services, by autonomously detecting, understanding, and
exploiting the general context – physical, technological, and social – in which
they operate, will be able to autonomously adapt their characteristics, and to
spontaneously aggregate and orchestrate their activities accordingly. This will
enable a wide range of new activities that are simply not possible or imprac-
tical now. Other than computational services, future scenarios will integrate
much more physically grounded notions of services. We will be able to exploit
in ubiquitous way the functionalities provided by clouds of micro-computers
dispersed in the environment, notably increasing our capability of interact-
ing with the environment (e.g., by sensor networks) and possibly capable of
dynamically reshaping the physical environment to our needs (e.g., by self-
assembly materials). Also, we will be supported in our physical actions by
teams of cooperative mobile robots or by flexible modular robots.

In the above scenario, engineers will be provided with tools by which to
design and develop new applications and services that will be able to self-
configure and self-adapt their behavior in reliable and predictable ways. After
deployment, it will be optional for humans to remain in the loop: developers
and users should of course retain the capability of controlling and directing
the behavior of such autonomous self-organizing systems, but they will also
be free to fully rely on their internal self-organizing capabilities.

At the time of this writing, and despite our own personal expectations, we
cannot say for sure if the main drive for the realization of the above vision
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will be field-based coordination, a combination of other coordination models
and mechanisms, or even a totally different yet to be invented general model.
What we know for sure is that there is an exciting research future ahead.
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